;; Test code for CSSE 304 Assignment 7 ; Why did I use FLUID-LET instead of DEFINE (which is in the on-line ; test cases) for BigNums? In my off-line test code, I always make a ; list of results, and all of those DEFINEs are illegal inside the call to list. ; The first thought might be to use LET instead of define. But that has a ; problem, too. Binding with LET is lexical. The code for SUCC, for ; example, refers to BASE, which is not locally bound in the code for SUCC. ; Binding it lexically outside the CALL to SUCC doesn't help. But ; FLUID-LET does dynamic (not lexical) binding, saying, "while the inner ; code (call to a bignul procedure) is being EXECUTED, let BASE be 4 ; (or whatever number we want it to be) (define BASE 8) (define (test-bignums) (let ([correct '( () (1) (0 1) (1) () (0 1) (1 0 4) (7 7 3) 3216 (0 3 6 2) (1 0 0 1) (2) () () (4 1) (7 7 7) (7 7 7 7) (1) (0 2 2) (0 2 3 0 4) (0 0 0 0 1 0 1 1 0 1) 720 )] [answers (list (fluid-let ([BASE 2]) (zero)) (fluid-let ([BASE 2]) (succ (zero))) (fluid-let ([BASE 2]) (succ (succ (zero)))) (fluid-let ([BASE 2]) (pred (succ (succ (zero))))) (fluid-let ([BASE 2]) (pred (pred (succ (succ (zero)))))) (fluid-let ([BASE 8]) (succ '(7 0))) (fluid-let ([BASE 8]) (int->bignum 257)) (fluid-let ([BASE 8]) (int->bignum 255)) (fluid-let ([BASE 8]) (bignum->int (int->bignum 3216))) (fluid-let ([BASE 7]) (succ (succ(int->bignum 999)))) (fluid-let ([BASE 6]) (plus (int->bignum 200) (int->bignum 17))) (fluid-let ([BASE 6]) (plus (int->bignum 1) (int->bignum 1))) (fluid-let ([BASE 8]) (multiply (int->bignum 2) (int->bignum 0))) (fluid-let ([BASE 8]) (multiply (int->bignum 0) (int->bignum 2))) (fluid-let ([BASE 8]) (multiply (int->bignum 12) (int->bignum 1))) (fluid-let ([BASE 8]) (multiply (int->bignum 7) (int->bignum 73))) (fluid-let ([BASE 8]) (multiply (succ (int->bignum 64)) (pred (int->bignum 64)))) (fluid-let ([BASE 10]) (factorial '())) (fluid-let ([BASE 3]) (factorial '(1 1))) (fluid-let ([BASE 10]) (factorial '(8))) (fluid-let ([BASE 2]) (factorial (int->bignum 6))) (fluid-let ([BASE 2]) (bignum->int (factorial (int->bignum 6)))) )]) (display-results correct answers equal?))) (define (test-diff-trees) (let ([correct '( #t #t #t #t #t #t #t )] [answers (list (and (dt? '(one)) (not (dt? '(diff (one) (one) (one))))) (let* ([one '(one)] [zero '(diff (one) (one))]) (and (dt= (dt+ one zero) one) (not (dt= (dt+ one zero) zero)))) (let ([one '(one)]) (and (dt= (dt- (dt+ one one) one) one) (not (dt= (dt+ one one) one)))) (let ([num-list1 '(3 5 -2 -5 1 0)] [num-list2 '(2 8 -7 4 0 12)]) (equal? (map (lambda (x y) (dt->integer (dt- (integer->dt x) (integer->dt y)))) num-list1 num-list2) (map - num-list1 num-list2))) (let ([thirteen (integer->dt 13)] [nineteen (integer->dt 19)] [sixteen (integer->dt 16)] [fifty (integer->dt 50)] [minus-eightteen (integer->dt -18)]) (and (dt= (dt+ thirteen nineteen) (dt+ sixteen sixteen)) (dt= (dt+ thirteen nineteen) (dt+ fifty minus-eightteen)))) (let ([thirteen (integer->dt 13)] [twenty-one (integer->dt 21)] [seventeen (integer->dt 17)] [fifty (integer->dt 50)] [minus-sixteen (integer->dt -16)]) (and (dt= (dt+ thirteen twenty-one) (dt+ seventeen seventeen)) (dt= (dt+ thirteen twenty-one) (dt+ fifty minus-sixteen)))) (let* ([one '(one)] [two (dt+ one one)] [three (dt+ one two)] [four (dt+ two two)] [seven (dt+ three four)]) (dt= (dt-negate seven) (integer->dt -7))) )]) (display-results correct answers equal?))) (define (test-bintree-to-list) (let ([correct '( (leaf-node 3) (interior-node a (interior-node b (interior-node c (leaf-node 1) (interior-node d (leaf-node 2) (leaf-node 3))) (interior-node e (leaf-node 5) (leaf-node 6))) (interior-node f (interior-node g (interior-node h (interior-node i (leaf-node 7) (leaf-node 8)) (leaf-node 9)) (leaf-node 10)) (leaf-node 11))) (interior-node a (interior-node b (interior-node c (interior-node d (interior-node e (interior-node f (interior-node g (interior-node h (interior-node i (interior-node j (interior-node k (interior-node l (interior-node m (interior-node n (interior-node o (interior-node p (interior-node q (interior-node r (interior-node s (interior-node t (interior-node u (interior-node v (interior-node w (interior-node x (interior-node y (interior-node z (leaf-node 1) (leaf-node 2)) (leaf-node 3)) (leaf-node 4)) (leaf-node 5)) (leaf-node 6)) (leaf-node 7)) (leaf-node 8)) (leaf-node 9)) (leaf-node 10)) (leaf-node 11)) (leaf-node 12)) (leaf-node 13)) (leaf-node 14)) (leaf-node 15)) (leaf-node 16)) (leaf-node 17)) (leaf-node 18)) (leaf-node 19)) (leaf-node 20)) (leaf-node 21)) (leaf-node 22)) (leaf-node 23)) (leaf-node 24)) (leaf-node 25)) (leaf-node 26)) (leaf-node 27)) )] [answers (list (bintree-to-list (leaf-node 3)) (bintree-to-list (interior-node (quote a) (interior-node (quote b) (interior-node (quote c) (leaf-node 1) (interior-node (quote d)(leaf-node 2) (leaf-node 3))) (interior-node (quote e) (leaf-node 5) (leaf-node 6))) (interior-node (quote f) (interior-node (quote g) (interior-node (quote h) (interior-node (quote i) (leaf-node 7) (leaf-node 8)) (leaf-node 9)) (leaf-node 10)) (leaf-node 11)))) (bintree-to-list (interior-node (quote a) (interior-node (quote b) (interior-node (quote c) (interior-node (quote d) (interior-node (quote e) (interior-node (quote f) (interior-node (quote g) (interior-node (quote h) (interior-node (quote i) (interior-node (quote j) (interior-node (quote k) (interior-node (quote l) (interior-node (quote m) (interior-node (quote n) (interior-node (quote o) (interior-node (quote p) (interior-node (quote q) (interior-node (quote r) (interior-node (quote s) (interior-node (quote t) (interior-node (quote u) (interior-node (quote v) (interior-node (quote w) (interior-node (quote x) (interior-node (quote y) (interior-node (quote z) (leaf-node 1) (leaf-node 2)) (leaf-node 3)) (leaf-node 4)) (leaf-node 5)) (leaf-node 6)) (leaf-node 7)) (leaf-node 8)) (leaf-node 9)) (leaf-node 10)) (leaf-node 11)) (leaf-node 12)) (leaf-node 13)) (leaf-node 14)) (leaf-node 15)) (leaf-node 16)) (leaf-node 17)) (leaf-node 18)) (leaf-node 19)) (leaf-node 20)) (leaf-node 21)) (leaf-node 22)) (leaf-node 23)) (leaf-node 24)) (leaf-node 25)) (leaf-node 26)) (leaf-node 27))) )]) (display-results correct answers equal?))) (define (test-max-interior) (let ([correct '( q e a b f a b )] [answers (list (max-interior (interior-node (quote a) (interior-node (quote b) (leaf-node -21) (interior-node (quote d) (leaf-node 4) (interior-node (quote e) (leaf-node 5) (leaf-node 6)))) (interior-node (quote q) (leaf-node 4) (interior-node (quote r) (leaf-node -2) (leaf-node 70))))) (max-interior (interior-node (quote a) (interior-node (quote b) (leaf-node -3) (leaf-node -4)) (interior-node (quote c) (leaf-node -1) (interior-node (quote d) (leaf-node -1) (interior-node (quote e) (leaf-node -1) (leaf-node -5)))))) (max-interior (interior-node (quote a) (leaf-node -100) (leaf-node -50))) (max-interior (interior-node (quote a) (interior-node (quote b) (interior-node (quote e) (leaf-node -10) (leaf-node -100)) (leaf-node 100)) (interior-node (quote c) (leaf-node 100) (interior-node (quote f) (leaf-node -100) (leaf-node -11))))) (max-interior (interior-node (quote a) (interior-node (quote b) (interior-node (quote e) (leaf-node -10) (leaf-node 100)) (leaf-node -100)) (interior-node (quote c) (leaf-node -100) (interior-node (quote f) (leaf-node 100) (leaf-node 10))))) (max-interior (interior-node (quote a) (interior-node (quote b) (interior-node (quote c) (leaf-node 1) (interior-node (quote d) (leaf-node 2) (leaf-node 3))) (interior-node (quote e) (leaf-node 5) (leaf-node 6))) (interior-node (quote f) (interior-node (quote g) (interior-node (quote h) (interior-node (quote i) (leaf-node 7) (leaf-node 8)) (leaf-node 9)) (leaf-node 10)) (leaf-node 11)))) (max-interior (interior-node (quote a) (leaf-node -3) (interior-node (quote b) (leaf-node 2) (interior-node (quote c) (leaf-node -1234567890) (leaf-node (* -123099487598375943759874 98734598743598585024320)))))) )]) (display-results correct answers equal?))) ;----------------------------------------------- (define display-results (lambda (correct results test-procedure?) (display ": ") (pretty-print (if (andmap test-procedure? correct results) 'All-correct `(correct: ,correct yours: ,results))))) (define sequal?-grading (lambda (l1 l2) (cond ((null? l1) (null? l2)) ((null? l2) (null? l1)) ((or (not (set?-grading l1)) (not (set?-grading l2))) #f) ((member (car l1) l2) (sequal?-grading (cdr l1) (rember-grading (car l1) l2))) (else #f)))) (define set?-grading (lambda (s) (cond [(null? s) #t] [(not (list? s)) #f] [(member (car s) (cdr s)) #f] [else (set?-grading (cdr s))]))) (define rember-grading (lambda (a ls) (cond ((null? ls) ls) ((equal? a (car ls)) (cdr ls)) (else (cons (car ls) (rember-grading a (cdr ls))))))) (define set-equals? sequal?-grading) (define find-edges ; e know that this node is in the graph before we do the call (lambda (graph node) (let loop ([graph graph]) (if (eq? (caar graph) node) (cadar graph) (loop (cdr graph)))))) ;; Problem 8 graph? (define set? ;; Is this list a set? If not, it is not a graph. (lambda (list) (if (null? list) ;; it's an empty set. #t (if (member (car list) (cdr list)) #f (set? (cdr list)))))) (define graph? (lambda (obj) (and (list? obj) (let ([syms (map car obj)]) (and (set? syms) (andmap symbol? syms) (andmap (lambda (x) (andmap (lambda (y) (member y (remove (car x) syms))) (cadr x))) obj)))))) (define graph-equal? (lambda (a b) (and (graph? a) (graph? b) (let ([a-nodes (map car a)] [b-nodes (map car b)]) (and (set-equals? a-nodes b-nodes) ; Now See if the edges from each node are equivalent in the two graphs. (let loop ([a-nodes a-nodes]) (if (null? a-nodes) #t (let ([a-edges (find-edges a (car a-nodes))] [b-edges (find-edges b (car a-nodes))]) (and (set-equals? a-edges b-edges) (loop (cdr a-nodes))))))))))) (define (test-graph-equal) (list (graph-equal? '((a (b)) (b (a))) '((b (a)) (a (b)))) (graph-equal? '((a (b c d)) (b (a c d)) (c (a b d)) (d (a b c))) '((b (a c d)) (c (a b d)) (a (b d c)) (d (b a c)))) (graph-equal? '((a ())) '((a ()))) (graph-equal? '((a (b c)) (b (a c)) (c (a b))) '((a (b c)) (b (a c)) (c (a b)))) (graph-equal? '() '()) )) (define g test-graph-equal) ;You can run the tests individually, or run them all ;#by loading this file (and your solution) and typing (r) (define (run-all) (display 'bignums) (test-bignums) (display 'diff-trees) (test-diff-trees) (display 'bintree-to-list) (test-bintree-to-list) (display 'max-interior) (test-max-interior) ) (define r run-all)