CSSE 304 Assignment 11 Updated for Spring, 2014.
This assignment has only four problems, but they are non-trivial. Start early!

This is an individual assignment.
No input error-checking is required. You may assume that all arguments have the correct form.

Abbreviation for the textbook:
EoPL - Essentials of Programming Languages, 3rd Edition.

No mutation is allowed in your solutions to problems 1 and 2.

Programming problems

#1 (30 points). lexical-address. Write a procedure lexical-address that takes an expression like those from the last problem from the previous assignment and returns a copy of the expression with every bound variable reference v replaced by a list (: d p). If the variable reference v is free, produce the following list instead: (: free xyz) To produce the symbols : and free, use ’: and ’free.
Hint: It may be easiest to do this with a recursive helper function that keeps track of bound variables and their levels as it descends into various levels of the expression.Examples:

(lexical-address '(lambda (a b c)

 (if (eq? b c)

 ((lambda (c)

 (cons a c))

 a)

 b))) 

(lambda (a b c)

 (if ((: free eq?) (: 0 1) (: 0 2))

 ((lambda (c) ((: free cons) (: 1 0) (: 0 0)))

 (: 0 0))

 (: 0 1)))

(lexical-address

 '((lambda (x y)

 (((lambda (z)

 (lambda (w y)

 (+ x z w y)))

 (list w x y z))

 (+ x y z)))

 (y z))) 

((lambda (x y)

 (((lambda (z)

 (lambda (w y)

 ((: free +) (: 2 0) (: 1 0) (: 0 0) (: 0 1))))

 ((: free list) (: free w) (: 0 0) (: 0 1) (: free z)))

 ((: free +) (: 0 0) (: 0 1) (: free z))))

 ((: free y) (: free z)))

(lexical-address

 '(lambda (a b c)

 (if (eq? b c)

 ((lambda (c) (cons a c))

 a)

 b))) 
(lambda (a b c)

 (if ((: free eq?)(: 0 1) (: 0 2))

 ((lambda (c) ((: free cons) (: 1 0) (: 0 0)))

 (: 0 0))

 (: 0 1)))
#2 (30 points*). un-lexical-address. Its input will be in the form of the output from lexical-address , as described in the previous problem. When I test it, I will evaluate
 (un‑lexical‑address (lexical‑address <some‑expression>))

and see if I get back the original expression. You cannot get credit for this problem unless you also get a significant number of the points for lexical-address. [For example, someone who defined both lexical-address and un-lexical-address to be the identity procedure would trick the grading program into giving them full credit for un-lexical-address, but would earn zero points for both problems as their actual grade after we look at the code by hand.]

* lexical-address is much harder than un-lexical-address, but errors in your lexical-address code will most likely be discovered when you write/test un-lexical-address.

#3 (30 points)

(a) Extend the definition of my-let produced in class to include the syntax for named let. This should be translated into the equivalent letrec expression.

> (my-let fact ([n 5]) (if (zero? n) 1 (* n (fact (- n 1)))))

120

(b) Suppose that or was not part of the Scheme language. Show how we could add it by using define-syntax to define my-or, similar to my-and that we defined in class. This may be a little bit trickier than my-and; the trouble comes if some of the expressions have side-effects; you want to make sure that no expression gets evaluated twice. In general, your my-or should behave just like Scheme's or.

> (begin (define a #t)

 (define x (my-or #f (begin (set! a (not a)) a) #t (set! a (not a))))
 (list a x))

(#f #t)
(c) Use define-syntax to define += , with behavior like += in other languages.

> (begin (define r 4) (define y (+ 6 (+= r 3))) (list r y))
(7 13)

(d) As you should know, (begin e1 … en) evaluates the expressions e1 … en in order, returning the value of the last expression. It is sometimes useful to have a mechanism for evaluating a number of expressions sequentially and returning the value of the first expression. I call that syntax return-first. Use define-syntax to define return-first.
> (define a 3) (begin a (set! a (+ 1 a)) a)

4

 > (define a 3) (return-first a (set! a (+ 1 a)) a)

 3

CSSE 304 Assignment 11
Page 2
04/01/14

