CSSE 304

Assignment 10 Updated for Spring, 2014
No input error-checking is required. You may assume that all arguments have the correct form.
Abbreviations for the textbook:
EoPL
- Essentials of Programming Languages, 3rd Edition.
No mutation is allowed, except on the iterator problem, where mutation is necessary.

#1 (30 points). S-lists are defined on page 8 of EoPL. You are to write a procedure called make-slist-leaf-iterator. This procedure takes an s-list as its argument, and returns a iterator procedure that takes no arguments (a.k.a. a thunk). Each time the iterator procedure is called, it returns the next symbol from the s-list. If the iterator is called again after the all of the symbols from the s-list have been exhausted, it returns #f. An example should help you to understand what an s-list leaf iterator is supposed to do (things in bold are the things that I typed, the others are Scheme's responses):

> (define iter (make-slist-leaf-iterator '((a (b c) () d) () e)))

> (iter)

a

> (iter)

b

> (iter)

c

> (iter)

d

> (iter)

e

> (iter)

#f

> (iter)

#f

Obviously the iterator procedure must maintain a mutable state if it is to exhibit this behavior.

One simple approach to creating the iterator would be to simply call flatten on the s-list, and then use cdr to traverse the resulting flat list. However, this approach has a property that no iterator should have! It requires visiting every symbol in the s-list before the iterator is asked to return the first symbol. If we create an iterator procedure for an s-list that contains thousands of symbols, but then we call that iterator only a few times, the iterator should not have to deal with all of the symbols in the s-list.
Thus you are not allowed to use any such approach that "preprocesses" the entire s-list in order to make the iteration simpler.

The standard way to do tree iterators is to use a stack to keep track of subtrees whose left side we have already visited. In this case, the stack will keep track of cdrs of the pairs whose cars we have already visited. The idea is similar to the tree iterators presented in chapter 18 of the CSSE 230 book: Mark Allen Weiss, Data Structures and Problem Solving using Java.

You may want to write mutually-recursive helper procedures, similar in function to Weiss's first and advance methods.

Should an s-list leaf iterator do a preorder or postorder traversal? It doesn't matter, since we are only iterating the leaves; preorder and postorder visit the leaves in the same order.

Be careful about empty sublists. Notice in the example above that the iterator skips them.

My version of an s-list leaf iterator procedure has only one persistent local variable, which contains a stack object.

To make things a little bit easier for you, here is the code that I used for constructing a stack (You can find it in

http://www.rose-hulman.edu/class/csse/csse304/201430/Homework/Assignment_10/stack.ss)

(define make-stack

 (lambda ()

 (let ([stk '()])

 (lambda (msg . args)

 (case msg

 [(empty?) (null? stk)]

 [(push) (set! stk (cons (car args) stk))]

 [(pop) (let ([top (car stk)])

 (set! stk (cdr stk))

 top)]

 [else (errorf 'stack "illegal message to stack object: ~a" msg)])))))

#2 (15 points) free-vars, bound-vars. Given a LcExp e, (free-vars e) returns the set of all variables that occur free in e. bound-vars is similar. Write these procedures directly; do not use occurs-free or occurs-bound in your definitions. Your code only needs to process the simple lambda-calculus expressions from the grammar on page 9 of EoPL, not the extended expressions from problem 3 and 4 of this assignment.

> (free-vars

 '((lambda (x) (x y)) (z (lambda (y) (z y)))))

(y z)

> (bound-vars

 '((lambda (x) (x y)) (z (lambda (y) (z z)))))

(x)

#3 (40 points) Enhance occurs-free? and occurs-bound? to incorporate the following language features from all of these problems into your code. You can find the original occurs-free? and occurs-bound? from the textbook at

 http://www.rose-hulman.edu/class/csse/csse304/201430/Resources/Code-from-Textbook/1.scm
a) Scheme lambda expressions may have more than one (or zero) parameters, and Scheme procedure calls may have any more than one (or zero) arguments. Modify the formal definitions of occurs-free? and occurs-bound? to allow lambda expressions with any number of formal parameters and procedure calls with any number of arguments. Then modify the procedures occurs-free? and occurs-bound? to include these new definitions.
b) Extend the formal definitions of occurs-free? and occurs-bound? to include if expressions, and implement these in your code.
c) Extend the formal definitions of occurs-free? and occurs-bound? to include Scheme let and let* expressions, and implement these in your code.
d) Extend the formal definitions of occurs-free? and occurs-bound? to include Scheme assignment (set!) expressions, and implement these in your code. Note that set! does not bind any variables.
(occurs-bound? 'x '(lambda (y) (set! x y)))
  #f

(occurs-free? 'y '(lambda (x a b) y))
 #t

(occurs-free? 'b '(let* ((y a) (x b)) ((x y) z)))
 #t

(occurs-free? 'set! '(lambda (x) (set! x y)))
 #f ; set! is Scheme syntax, not a variable
(occurs-bound? 'z '(lambda () (let* ((x a) (y x)) (if (y z) (lambda () x) (lambda () y)))))  #f

CSSE 304 Assignment 10
Page 2
03/31/14

