CSSE 304 	 Assignment 8 Updated for 2014	
Objectives To practice Following the Grammar when writing recursive code.

Same rules as the previous assignments, including the prohibition of mutation.
No argument error-checking is required. You may assume that all arguments have the correct form.

You may find Chez Scheme's trace-let to be helpful for debugging your code; if you use it (or other trace elements), be sure to remove it before submitting to the grading server.

#1 (50 points) These s-list procedures have a lot in common with the s-list procedures that we wrote during our Session 8 class. Recall the extended BNF grammar for s-lists:

<s-list> ::= ({<s-expression>}*)
<s-expression> ::= <symbol> | <s-list>

A change from what we did in class: In class I said that the depth of the empty list is 0, but it now makes more sense to me to have depth 0 mean "outside all lists", so that the depth of any symbol is the number of pairs of parentheses that enclose it. If we wanted to make the in-class notate-depth code consistent with this, we would replace [depth 0] by [depth 1] in the second line of the in-class code.

(a) (slist-map proc slist) applies proc to each element of slist.

 (slist-map
 (lambda (x)
 (let ([s (symbol→string x)])
 (string→symbol (string-append s s))))
 '((b (c) d) e ((a)) () e))  ((bb (cc) dd) ee ((aa)) () ee)

(b) (slist-reverse slist) reverses slist and all of its sublists.
	
 (slist-reverse '(a (b c) () (d (e f))))  (((f e) d) () (c b) a)

(c) (slist-paren-count slist) counts the number of parentheses required to produce the printed representation of slist. You must do this by traversing the structure, not by having Scheme give you a string representation of the list and counting parenthesis characters. You can get this count by looking at cars and cdrs of slist).

 (slist-paren-count '())  2	 Note: s-lists are always proper lists.
 (slist-paren-count '(a (b c) d))  4			
 (slist-paren-count '(a (b) (c () ((d)))))  12	

(d) (slist-depth slist) finds the maximum nesting-level of parentheses in the printed representation of slist. You must do this by traversing the structure, and not by having Scheme give you a string representation of the list and counting the maximum nesting of parenthesis characters.

 (slist-depth '())  1
 (slist-depth '(a b c))  1
 (slist-depth '(a (b c) d)))  2
 (slist-depth '(a (b (c)) (a b)))  3
 (slist-depth '(((a) (()) b) (c d) e))  4

(e) (slist-symbols-at-depth slist d) returns a list of the symbols from whose depth is the positive integer d. They should appear in the same order in the return value as in the original s-list. This one has the basic pattern of the other s-list procedures, but I found it easier to use a slight variation on that pattern.

(slist-symbols-at-depth '(a (b c) d) 2)  (b c)
(slist-symbols-at-depth '(a (b c) d) 1)  (a d)
(slist-symbols-at-depth '(a (b c) d) 3)  ()
#2 (25 points) On pp 20-22 of EoPL, you should have read about (subst new old slist), which substitutes new for each occurrence of symbol old in the s-list slist. We also wrote this procedure during Session 8(in spring, 2014 term; may happen in a different session in a later term).

Now write subst-leftmost, which takes the same arguments (plus a comparison predicate, described below), but only substitutes new for the leftmost occurrence of old. By "leftmost", I mean the occurrence that would show up first if Scheme printed the list. Another way of saying it is "the one that is encountered first in a preorder traversal". Your procedure must “short-circuit”, i.e. avoid traversing the cdr of any sublist if the substitution has already been done anywhere in the car of that sublist. You should only traverse the parts of the tree that are necessary to find the leftmost occurrence and do the substitution, then copy the references to all of the remaining cdrs without traversing the sublists of those cdrs. I.e., you must not traverse the same sublist twice.
[bookmark: _GoBack]Hint: (added after the assignment was due in 201430): if your code calls equal? or contains? or any other procedure that traverses an entire s-list, you are probably violating the don't-traverse-twice rule.

In order to make the procedure slightly more general (and easier for me to test the above constraint), subst-leftmost will have an additional argument that subst does not have. It is an equality procedure, used to determine whether an individual symbol or number in the list matches old.

(subst-leftmost 'k 'b '((c d a (e () f b (c b)) (a b)) (b)) eq?) 
 ((c d a (e () f k (c b)) (a b)) (b))
(subst-leftmost 'b 'a '(c (A e) a d)
 (lambda (x y) (string-ci<=? (symbol->string x) (symbol->string y))))  (c (b e) a d)

(define subst-leftmost ; substitute new for leftmost occurrence of old in slist (match defined by equality-pred?)
 (Lambda (new old slist equality-pred?) ; you fill in the rest.
 ...))

Note: Mutation could possibly be used to do in this problem, but I want you to get a bit more practice on purely functional programming, and this problem will certainly give you that practice! The last part of problem 3 uses similar ideas in a different data domain.

#3 (50 points) Recall the following syntax definition from page 9 of EOPL:
 <bintree> ::= <integer> | (<symbol> <bintree> <bintree>)

Write the following procedures:
· (bt-leaf-sum T) finds the sum of all of the numbers in the leaves of the bintree T.
· (bt-inorder-list T) creates a list of the symbols from the interior nodes of T, in the order that they would be visited in an inorder traversal of the binary tree.
· (bt-max T) returns the largest integer in the tree.
· (bt-max-interior T) takes a binary tree with at least one interior node, calculates (in O(N)) time and returns the symbol associated with an interior node whose subtree has a maximal leaf sum (at least as large as the sum form any other node in the tree). If multiple nodes in the tree have the same maximal leaf-sum, return the symbol associated with the leftmost maximal node.
This one is trickier than it looks at first! You may not use mutation. You may not traverse any subtree twice (such as by calling leaf-sum on every interior node). You may not create any additional data size O(N) structures that you then traverse to get the answer. Think about how to return enough info from the recursive calls to do this without another traversal.
Hint: The solution has a lot in common with subst-leftmost.

