CSSE 304 Assignment 7 Updated for 2014

Objectives: You should learn 	
· More about list processing.
· More about the use of let, letrec, named let, map, and apply.
· How to base recursive programs on recursive datatype definitions.
.
Details for these instructions are in the previous assignment
Individual assignment. Comments at beginning, before each problem, when you do anything non-obvious. Submit to server (test offline first). Your code must not mutate (unless a particular problem calls for it), read or write anything. Assume arguments have correct form unless problem says otherwise.
Abbreviations for the textbooks: 	EoPL	- Essentials of Programming Languages, 3rd Edition
				 	TSPL	- The Scheme Programming Language, 4rd Edition
					EoPL-1	- Essentials of Programming Languages, 1st Edition (handout)
	
Reading Assignment: See the schedule page. Have you been keeping up with the reading?

Problems to turn in: For many of these, you will want to write one or more helper procedures.

Some of the problems come from Chapter 1 of EoPL (3rd edition), which you should have been reading already.

#1 (5 points) invert EoPL 1.16, page 26

#2 (10 points) vector-index Like list-index, but its second argument is a vector, not a list.

#3 (10 points) vector-append-list (vector-append-list v lst) returns a new vector with the elements of lst attached to the end of v. Do this without using vector->list, list->vector, or append.
For this problem only, you may (and in fact must) use mutation: namely vector-set!

#4 (20 points) Write qsort. (qsort pred ls), a Scheme procedure whose arguments are
a predicate (total ordering) which takes two arguments x and y, and returns #t if x is "less than" y, #f otherwise.
a list whose items can be compared using this predicate.
qsort should produce the sorted list using a QuickSort (note: write your own; do not use Scheme’s sort function) algorithm.

For example:
(qsort < '(4 2 4 3 2 4 1 8 2 1 3 4))  (1 1 2 2 2 3 3 4 4 4 4 8)

(qsort (lambda (x y) (< (abs (- x 10)) (abs (- y 10))))
 '(5 1 10 8 16 17 23 -1))
  (10 8 5 16 17 1 -1 23)
If you aren’t sure how QuickSort works, see http://en.wikipedia.org/wiki/Quicksort. There are quicksort algorithms that do fancy things when choosing the pivot in order to attempt to avoid the worst case. You do not need to do any of those things here; you can simply use the car of the list as the pivot. Since mutation is not allowed, your algorithm cannot do the sort in-place. Furthermore, you are not allowed to copy the list elements to a vector, then sort the vector and copy back to a list. All of your work should be done with lists.

#5 (15 points) Write a Scheme predicate (connected? g) that takes an undirected graph (represented as in previous assignments) and determines whether it is connected. A graph is connected if every vertex can be reached from every other vertex via a sequence of edges. Starting point: the null graph and the graph with one vertex are connected. For example:

(connected? '((a (c)) (b (c)) (c (a b)))) 		 #t
(connected? '((a ()) (b (c)) (c (b)))) 		 #f
(connected? '((a (b)) (b (a)) (c (d)) (d (c)))) 	 #f

 #6 (10 points) Write (reverse-it lst) that takes a single-level list lst and returns a new list that has the elments of lst in reverse order. The original list should not be changed. Can you do this in O(n) time? You probably cannot if you use append.

#7 (40 points) Examples are in the test cases. A Binary Search Tree (BST) datatype is defined on page 10 of EoPL. Define the following procedures:
1. (empty-BST) takes no arguments and creates an empty tree, which is represented by an empty list.
2. (empty-BST? obj) takes a Scheme object obj. It returns #t if obj is an empty BST and #f otherwise.
3. (BST-insert num bst) returns a BST result. If num is already in bst, result is structurally equivalent to bst. If num is not already in bst, result adds num in its proper place relative to the other nodes in a tree whose shape is the same as the original. Like any BST insertion, this should have a worst-case running time that is O(height(bst)).
4. (BST-inorder bst) should (in O(N) time) produce an ordered list of the values in bst.
5. (BST? obj) returns #t if Scheme object obj is a BST and #f otherwise.
6. BST-element, BST-left, BST-right. Accessor procedures for the parts of a node.
7. (BST-insert-nodes bst nums)starts with tree bst and inserts each integer from the list nums, in the given order, returning the tree that includes all of the inserted nodes.
8. (BST-contains? bst num) determines, in time that is O(height(bst)), whether num is in bst.

#8 (10 points) Write (map-by-position fn-list arg-list) where fn-list and arg-list have the same length, and each element of the list fn-list has a type that is appropriate to be an argument of the corresponding element of arg-list. It returns a list (in their original order) of the results of applying each function from fn-list to the corresponding value from arg-list. You must use map to solve this problem; no explicit recursion is allowed.

(map-by-position (list cadr - length (lambda(x)(- x 3)))
[bookmark: _GoBack] '((1 2) -2 (3 4) 5))  (2 2 2 2)

CSSE 304 Assignment 7	Page 2	03/23/14
