CSSE 304 Assignment 6 Updated for 2014

Objectives: You should learn 	
· To use begin to use first-class procedures effectively.
· To think a bit about efficiency of programs.
.
Details for these instructions are in the previous assignment
Individual assignment. Comments at beginning, before each problem, when you do anything non-obvious. Submit to server (test offline first). Mutation not allowed.
	
Abbreviations for the textbooks: 	EoPL	- Essentials of Programming Languages, 3rd Edition
				 	TSPL	- The Scheme Programming Language, 4rd Edition
					EoPL-1	- Essentials of Programming Languages, 1st Edition (handout)
	
Reading Assignment: See the schedule page. Have you been keeping up with the reading?

Problems to turn in: For many of these, you will want to write one or more helper procedures.

Some of the problems deal with currying. http://en.wikipedia.org/wiki/Currying describes this as:
In mathematics and computer science, currying (schönfinkeling) is the technique of transforming a function that takes multiple arguments (or a tuple of arguments) in such a way that it can be called as a chain of functions, each with a single argument (partial application). It was originated by Moses Schönfinkel and later worked out by Haskell Curry.
Optional, not required knowledge for this course: An interesting discussion of the advantages of currying (the language of discourse is Haskell, but I think you can still follow much of the discussion.
http://www.reddit.com/r/programming/comments/181y2a/what_is_the_advantage_of_currying/
Some simple examples of currying appear on pages 26 (last sentence) through 28 of EoPL-1. The first two turnin-problems are from that section, and I recommend that you also think about problem 1.3.6.

#1 (10 points) curry2. This is EoPL-1 Exercise 1.3.4, page 28. Exampls are on that page.

#2 (10 points) EoPL-1 Exercise 1.3.5, page 28. Call your procedure curried-compose .
For example, (((curried-compose car) cdr) '(a b c))  b

#3 (10 points) compose. EoPL-1 Exercise 1.3.7, page 29. This one will most likely begin
 (define compose
 (lambda list-of-functions ; notice the lack of parentheses around the argument name.
((compose list list) 'abc)  ((abc))
((compose car cdr cdr) '(a b c d))  c

#4 (10 points) Write the procedure make-list-c that is a curried version of make-list.
(Note that the original make-list is described in TSPL Exercise 2.8.3).
We also wrote make-list in class during Week 1.

make-list-c : Integer  (SchemeObject  Listof(SchemeObject))

Examples:
((make-list-c 3) 'xyz)  (xyz xyz xyz)
 (let ([triple (make-list-c 3)])
 (triple "cat"))  ("cat" "cat" "cat")

#5 (10 points) Write let->application which takes a let expression (represented as a list) and returns the equivalent expression, also represented as a list : representing an application of a procedure created by a lambda expression. Your solution should not change the body of the let expression. This procedure's output list replaces only the top-level let by an equivalent application of a lambda expression. You do not have to replace any non-top-level lets. You may assume that the let expression has the proper form; your procedure does not have to check for this. Furthermore, you may assume that the let expression is not a named let. (continued next page)

let->application : SchemeCode  SchemeCode

Example:
	(let->application '(let ((x 4) (y 3))
 (let ((z 5))
 (+ x (+ y z)))))
 
 ((lambda (x y)
 (let ((z 5))
 (+ x (+ y z))))
 4 3)

 #6 ((10 points) Write let*->let which takes a let* expression (represented as a list) and returns the equivalent nested let expression. This procedure replaces only the top-level let* by an equivalent nested let expression. You may assume that the let* expression has the proper form.

let*->let: SchemeCode  SchemeCode

Example:
	(let*->let '(let* ([a 3] [b (+ a 4)]) b))
 
 (let ([a 3])
 	 (let ([b (+ a 4)])
 	b))

[bookmark: _GoBack]#7 (10 points) Write (filter-in pred? lst) where each element of the list lst has a type that is appropriate for an application of the predicate pred?. It returns a list (in their original order) of all elements of lst for which pred? returns #t.

filter-in: Procedure  List  List

Examples:
(filter-in positive? '(-1 2 0 3 -6 5))  (2 3 5)
(filter-in null? '(() (1 2) (3 4) () ()))  (() () ())
(filter-in list? '(() (1 2) (3 . 4) #2(4 5)))  (() (1 2))
(filter-in pair? '(() (1 2) (3 . 4) #2(4 5)))  ((1 2) (3 . 4))
(filter-in null? '())  ()

#8 (10 points) Write (filter-out pred? lst) where each element of the list lst has a type that is appropriate for an application of the predicate pred?. It returns a list (in their original order) of all elements of lst for which pred? returns #f.
filter-out: Procedure  List  List

Examples (These test cases and their answers may also help you to better understand the list? and pair? procedures):
(filter-out positive? '(-1 2 0 3 -6 5 0))  (-1 0 -6 0)
(filter-out null? '(() (1 2) (3 4) () ()))  ((1 2) (3 4))
(filter-out list? '(() (1 2) (3 . 4) #2(4 5)))  ((3 . 4) #(4 5))
(filter-out pair? '(() (1 2) (3 . 4) #2(4 5)))  (() #(4 5))
(filter-out null? '())  ()

#9 (10 points) Write a Scheme procedure (sort-list-of-symbols los) which takes a list of symbols and returns a list of the same symbols sorted as if they were strings. You will probably find the following procedures to be useful:
 symbol->string, map, string<?, sort (look it up in the Chez Scheme Users' Guide). Note that we have not covered specifics related to this problem, It is time for you to read some documentation and figure out how to use things.
Sort-list-of-symbols: ListOf(Symbol)  ListOf(Symbol)

Example (sort-list-of-symbols '(b c d g ab f b r m))  (ab b b c d f g m r)

CSSE 304 Assignment 6	Page 1	03/17/14
