
CSSE 304 Assignment 5
Objectives You should learn

· to write more complicated recursive procedures in a functional style.

· to better understand and use let, lambda, letrec, and named let.

· to FOLLOW THE GRAMMAR! (see page 22 of EoPL)

At the beginning of your file, there should be a comment that includes your name and the assignment number. Before the code for each problem, place a comment that includes the problem number. Please place the code for the problems in order by problem number.

You may use solutions from previous assignments in your solutions for this assignment.

Turning in this assignment: It is easiest if you place all of your Scheme code for this assignment in one file. If you prefer to place your code into more than one file, you need to create a .zip archive and submit it to the grading program. However, if you do this, the archive must contain a file called main.ss, which loads the other files. For more details, see the help page of the grading software.

You should thoroughly test your procedures, but what you turn in should only include the definitions of the required procedures and any auxiliary procedures that they use. Do not include your test code in the file that you submit unless you comment (or quote) it out. I suggest keeping your test code in a separate file called 5-test.ss, in which you can include
(load "5.ss"). You may choose any names that you wish for helper procedures that you write, but the required procedures must have exactly the specified names and they must work for the specified number and types of arguments.

Where submit your code. Submit your code to the server located at: https://plc.cs.rose-hulman.edu , where you can also see whether your code passes our test cases. Be sure to choose assignment A5 before submitting.

Restriction on Mutation. No mutation or I/O allowed! This includes: do not use set!, and the only use of "define" should follow this pattern: (define <some_variable> (lambda ...))

Abbreviations for the textbooks:
EoPL
- Essentials of Programming Languages, 3rd Edition

 TSPL
- The Scheme Programming Language, 3rd Edition

No argument error-checking is required. Unless specified otherwise, you may assume that all arguments have the correct form.

Problems to think about:

I do not think you need to take the time to write out solutions to these problems, but you should consider them.

EoPL Exercises 1.6 and 1.7, page 16; 1.8, page 18.

Written problems to turn in (at the beginning of class):

#W1 (10 points) EoPL, Exercise 1.5, page 12 (your proof must use mathematical induction)

#W2(15 points) Consider the following grammar for a language L whose terminal symbols are a and b:

<S> ::= <A><A>

<A> ::= <A><A><A> | b<A> | <A>b | a

(a) Describe in simple English (i.e. with no recursion or iteration in your description) the language L generated by this grammar, assuming that <S> is the start symbol.

(b) Prove (using mathematical induction) that every string of terminals that can be generated by this grammar is a string in the language you described in part (a).

(c) Describe an algorithm that, given a string w in L, produces a sequence of productions that can be used to create a derivation of w from the start symbol <S>.

Programming problems to submit to the grading program (by 8:05 AM):

Read the instructions and naming conventions at the beginning of section 1.4 Exercise on pp 25-26. They apply to parts of the following problems. You may also find the list of grammars near the end of the Session 8 PPT slides helpful here.
#1 (5 points) invert EoPL 1.16, page 26
#2 (10 points) vector-index Just like list-index, but its second argument is a vector, not a list.
#3 (10 points) product EoPL 1.21, page 27. Note that the product of the empty set with any other set is empty.

#4 (10 points) vector-append-list (vector-append-list v lst) returns a new vector with the elements of lst attached to the end of v. Do this without using vector->list, list->vector, or append.
For this problem only, you may use mutation: namely vector-set!
(vector-append-list #(1 2 3) ‘(4 5))
 #(1 2 3 4 5)
#5 (15 points) rotate (rotate los) returns a list that is similar to los, except that the last element of los becomes the first element of the returned list. Be sure that you rotate in the correct direction! Think about efficiency. No mutation!
(rotate '(a b c d))
 (d a b c)

(rotate '(shortlist))
 (shortlist)

(rotate '())

 ()

#6 (15 points) flatten EoPL 1.27, page 28.

#7 (10 points) merge EoPL 1.28, page 28.

#8 (10 points) path EoPL 1.34, page 30. Your code can assume that this is only called for successful searches).
Note that the symbol right should be produced by the code 'right . left is similar.

#9 (20 points) qsort. (qsort pred ls)is a Scheme procedure whose arguments are

· a predicate (total ordering) which takes two arguments x and y, and returns #t if x is "less than" y, #f otherwise.

· a list whose items can be compared using this predicate.
qsort should produce the sorted list using a QuickSort (note: write your own; do not use Scheme’s sort function) algorithm.

For example:

(qsort < '(4 2 4 3 2 4 1 8 2 1 3 4))  (1 1 2 2 2 3 3 4 4 4 4 8)

(qsort (lambda (x y) (< (abs (- x 10)) (abs (- y 10))))

 '(5 1 10 8 16 17 23 -1))

  (10 8 5 16 17 1 -1 23)

If you aren’t sure how QuickSort works, see http://en.wikipedia.org/wiki/Quicksort. There are quicksort algorithms that do fancy things when choosing the pivot in order to attempt to avoid the worst case. You do not need to do any of those things here; you can simply use the car of the list as the pivot. Since mutation is not allowed, your algorithm cannot do the sort in-place. Furthermore, you are not allowed to copy the list elements to a vector, then sort the vector and copy back to a list. All of your work should be done with lists.

#10 (15 points) connected?. Write a Scheme predicate (connected? g) that takes an undirected graph (represented as in previous assignments) and determines whether it is connected. A graph is connected if every vertex can be reached from every other vertex via a sequence of edges. Starting point: the null graph and the graph with one vertex are connected. For example:

(connected? '((a (c)) (b (c)) (c (a b))))

 #t

(connected? '((a ()) (b (c)) (c (b))))

 #f

(connected? '((a (b)) (b (a)) (c (d)) (d (c))))
 #f

You may assume that the argument that will be passed to your program is a valid graph.

Reminder: Did you double-check to be sure that each of your procedures has exactly the name and arguments specified here? Did you submit your assignment electronically?

CSSE 304 Assignment 5
Page 2
03/13/14

