CSSE 304 Assignment 4 Updated for 2014
Objectives: You should learn

· to write more complex recursive procedures in a functional style.

.
This is an individual assignment. You can talk to anyone you want and get as much help as you need, but you should type in the code and do the debugging process, as well as the submission process.
At the beginning of your file, there should be a comment that includes your name and the assignment number. Before the code for each problem, place a comment that includes the problem number. Place the code for the problems in order by problem number.
Turning in this assignment. Write all of the required procedures in one file, and upload it for assignment 3. You should test your procedures offline, using the test code file or other means, before submitting to the server.

Assume that arguments have the correct format. If a problem description says that an argument will have a certain type, you may assume that this is true; your code does not have to check for it. Note: In the matrix? problem, there are no assumptions about the argument's format.
Restriction on Mutation continues. As in the previous assignments, you will receive zero credit for a problem if any procedure that you write for that problem uses mutation or calls a procedure that mutates something.

Abbreviations for the textbooks:
EoPL
- Essentials of Programming Languages, 3rd Edition

TSPL
- The Scheme Programming Language, 3rd Edition

EoPL-1
- Essentials of Programming Languages, 1st Edition

#1 (5 points) The union of two sets is the set of all items that occur in both sets (the order does not matter).

union: Set  Set  Set

Examples:

 (union '(a f e h t b) '(g c e a b))  (a f e h t b g c) ; (or some permutation of it)

 (union '(2 3 4) '(1 a b))  (2 3 4 1 a b) ; (or some permutation of it)

#2 (5 points) A relation is reflexive if every element of the domain and range is related to itself. I.e., if (a b) is in the relation, so are (a a) and (b b). The procedure (reflexive? r) returns #t if relation r is reflexive and #f otherwise. You may assume that r is a relation. Our Scheme representation of a relation was defined in a previous assignment.
reflexive?: relation  Boolean

Examples:

 (reflexive? '((a b) (b a) (b b) (a a)))  #t

 (reflexive? '((a b) (b c) (a c)))  #f

#3 (3 points) A matrix is a rectangular grid of data items. We can represent a matrix in Scheme by a list of lists (the inner lists must all have the same length. For example, we represent the matrix

	1
	2
	3
	4
	5

	4
	3
	2
	1
	5

	5
	4
	3
	2
	1

by the list of lists ((1 2 3 4 5) (4 3 2 1 5) (5 4 3 2 1)) . We say that this matrix has 3 rows and 5 columns or (more concisely) that it is a 3×5 matrix. A matrix must have at least one row and one column.

Write a Scheme procedure (matrix-ref m row col), where m is a matrix, and row and col are integers. Like every similar structure in modern programming languages, the index numbers begin with 0 for the first row or column. This procedure returns the value that is in row row and column col of the matrix m. Your code does not have to check for illegal inputs or out-of-bounds issues.

matrix-ref : Listof(Listof(Integer))  Integer  Integer  Integer (assume that the first argument actually is a matrix)
Examples:

if m is the above matrix,

(matrix-ref m 0 0)  1

(matrix-ref m 1 3)  1
#4 (10 points) he predicate (matrix? obj) should return #t if the Scheme object obj is a matrix (a nonempty list of nonempty lists of numbers, with all sublists having the same length), and return #f otherwise.

matrix?: SchemeObject  Boolean

Examples:
(matrix? 5)
 #f

(matrix? "matrix")
 #f

(matrix? '(1 2 3))
 #f

(matrix? '((1 2 3)(4 5 6)))
 #t

(matrix? '#((1 2 3)(4 5 6)))
 #f

(matrix? '((1 2 3)(4 5 6)(7 8)))
 #f

(matrix? '((1)))
 #t

(matrix? '(()()()))
 #f

#5 (10 points) Each row of (matrix-transpose m) is a column of m and vice-versa.

matrix-transpose: Listof(Listof(Integer))  Listof(Listof(Integer)) (assume that the argument actually is a matrix)
Examples:

(matrix-transpose '((1 2 3) (4 5 6)))  ((1 4) (2 5) (3 6))

(matrix-transpose '((1 2 3)))  ((1) (2) (3))

(matrix-transpose '((1) (2) (3)))  ((1 2 3))

#6 (3 points) Write a recursive Scheme procedure (last ls) which takes a list of elements and returns the last element of that list. This procedure is the opposite of car. You must use the function signature listed here. You may assume that you get valid arguments. You may not reverse the list. You may assume that the argument contains at least one element. Note that car is a constant-time operation. What about last?
last: Listof(SchemeObject)  SchemeObject
Examples:

 (last '(1 5 2 4))
4

 (last '(c))  c
#7 (5 points) Write a recursive Scheme procedure (all-but-last list) which returns a list containing all elements but the last one. This procedure is the opposite of cdr. You must use the function signature listed here. You may assume that you get valid arguments. You may not reverse the list. You may assume that the argument contains at least one element. Note that cdr is a constant-time operation. What about all-but-last?
all-but-last: Listof(SchemeObject)  Listof(SchemeObject)
Examples:

 (all-but-last '(1 5 2 4))  (1 5 2)

 (all-but-last '(c)) ()

CS 304 Assignment 4
Page 2
03/12/14

