CSSE 304 Assignment 4

Objectives You should learn

· to write more complex recursive procedures in a functional style.

· to understand and use let, lambda, letrec, and named-let. Some problems will be eaqsier if you use these well.
This is an individual assignment. You can talk to anyone you want and get as much help as you need, but you should type in the code and do the debugging process, as well as the submission process.

At the beginning of your file, there should be a comment that includes your name and the assignment number. Before the code for each problem, place a comment that includes the problem number. Please place the code for the problems in order by problem number.

You may use solutions from previous assignments in your solutions for this assignment.

Turning in this assignment: It is easiest if you place all of your Scheme code for this assignment in one file. If you prefer to place your code into more than one file, you need to create a .zip archive and submit it to the grading program. However, if you do this, the archive must contain a file called main.ss, which loads the other files . For more details, see the help page of the grading software.

You should thoroughly test your procedures, but what you turn in should only include the definitions of the required procedures and any auxiliary procedures that they use. Do not include your test code in the file that you submit unless you comment (or quote) it out. I suggest keeping your test code in a separate file called 4-test.ss, in which you can include (load "4.ss"). You may choose any names that you wish for helper procedures that you write, but the required procedures must have exactly the specified names and they must work for the specified number and types of arguments.

Where submit your code. Submit your code to the server located at: https://plc.cs.rose-hulman.edu , where you can also see whether your code passes our test cases. Be sure to choose assignment A4 before submitting.

Restriction on Mutation. No mutation or I/O allowed! This includes: do not use set!, and the only use of "define" should follow this pattern: (define <some_variable> (lambda ...))

Abbreviations for the textbooks:
EoPL
- Essentials of Programming Languages, 3rd Edition

 TSPL
- The Scheme Programming Language

Problems to think about:

Writing out solutions and having them graded would be rather silly, but you should still be sure that you can do them. You should be able to check your own answers with the aid of a Scheme interpreter.

TSPL 2.2.6, 2.4.1 (Assume that there will be no mutation of any data), 2.4.2, 2.4.3, 2.5.1, 2.6.1, 2.8.1, 2.8.7,

EoPL Exercise 1.4, page 8.

Written problems to turn in (at the beginning of class on the due date)

#W1 (5 points) EoPL, Exercise 1.1, page 5

#W2 (10 points) EoPL, Exercise 1.2, page 7 (5 points for rewriting the grammar, 5 for rewriting the derivation)

#W3 (5 points) EoPL, Exercise 1.3, page 7

Programming problems (submit by 8:05 AM on the due date)

#1 (10 points) Write let->application which takes a let expression (represented as a list) and returns the equivalent expression, also represented as a list : representing an application of a procedure created by a lambda expression. Your solution should not change the body of the let expression. This procedure's output list replaces only the top-level let by an equivalent application of a lambda expression. You do not have to replace any non-top-level lets. You may assume that the let expression has the proper form; your procedure does not have to check for this. Furthermore, you may assume that the let expression is not a named let.

let->application : SchemeCode  SchemeCode

Example:

(let->application '(let ((x 4) (y 3))

 (let ((z 5))

 (+ x (+ y z)))))

 

 ((lambda (x y)

 (let ((z 5))

 (+ x (+ y z))))

 4 3)

#2 (10 points) Write let*->let which takes a let* expression (represented as a list) and returns the equivalent nested let expression. This procedure replaces only the top-level let* by an equivalent nested let expression. You may assume that the let* expression has the proper form.

let*->let: SchemeCode  SchemeCode

Example:

(let*->let '(let* ([a 3] [b (+ a 4)]) b))

 

 (let ([a 3])

 (let ([b (+ a 4)])

b))

Word will not let me move the next problem to this page. I eventually decided to stop fighting it.
#3 (10 points) Write (filter-in pred? lst) where each element of the list lst has a type that is appropriate for an application of the predicate pred?. It returns a list (in their original order) of all elements of lst for which pred? returns #t .

filter-in: Procedure  List  List

Examples:

(filter-in positive? '(-1 2 0 3 -6 5))  (2 3 5)

(filter-in null? '(() (1 2) (3 4) () ()))  (() () ())

(filter-in list? '(() (1 2) (3 . 4) #2(4 5)))  (() (1 2))

(filter-in pair? '(() (1 2) (3 . 4) #2(4 5)))  ((1 2) (3 . 4))

(filter-in null? '())  ()

#4 (5 points) Write (filter-out pred? lst) where each element of the list lst has a type that is appropriate for an application of the predicate pred?. It returns a list (in their original order) of all elements of lst for which pred? returns #f .

filter-out: Procedure  List  List

Examples (These test cases and their answers may also help you to better understand the list? and pair? procedures):

(filter-out positive? '(-1 2 0 3 -6 5 0))  (-1 0 -6 0)

(filter-out null? '(() (1 2) (3 4) () ()))  ((1 2) (3 4))

(filter-out list? '(() (1 2) (3 . 4) #2(4 5)))  ((3 . 4) #(4 5))

(filter-out pair? '(() (1 2) (3 . 4) #2(4 5)))  (() #(4 5))

(filter-out null? '())  ()

Problems 5-7 use the definition and representation of (undirected) graphs that are described in assignment 3. Each node of a graph is labeled by a symbol.

#5 (5 points) edge-count Write a Scheme procedure (edge-count g) that takes a graph g (you may assume that it is a valid graph), and returns the total number of edges in the graph. Note that since the graph is undirected, each edge will appear twice in our adjacency-list representation of graphs.

edge-count: Graph  Integer

(edge-count '((a (b c)) (b (a c)) (c (a b))))  3

(edge-count '((a (c)) (b (c)) (c (a b))))  2

(edge-count '((a ()) (b ()) (c ())))  0

(edge-count '()) 0

#6 (15 points) remove-vertex Write a Scheme procedure (remove-vertex g s) that takes a graph g (you may assume that it is a valid graph) and a symbol s that is the label of some vertex in that g, and returns a graph that is equivalent to the subgraph of g with that vertex (and all edges involving that vertex) removed. For example:

remove-vertex: Graph  Graph

(remove-vertex '((a (b c)) (b (a c)) (c (a b))) 'a)  ((b (c)) (c (b)))

(remove-vertex '((a (c)) (b (c)) (c (a b))) 'c)  ((a ()) (b ()))

#7 (20 points) graph? Write a Scheme predicate (graph? obj) that tells whether a Scheme object is a (directed) graph. The test for directed graphs is easier than for undirected.

graph? : SchemeObject  Boolean

For example:

(graph? #t)

 #f

(graph? '((#t ())))

 #f

(graph? '((a ())))

 #t

(graph? '((a (b)) (b (a c))))
 #f

(graph? '((a (b)) (b ((a)))))
 #f

(graph? '((a (b)) (b ())))
 #t

(graph? '((a (b)) (b ()) (a ())))  #f

(graph? '((a (b)) (c ())))
 #f

Problem 8 uses the definitions and representations of intervals that are described in assignment 1.

#8 (25 points) minimize-interval-list Write a Scheme procedure (minimize-interval-list ls) that takes a nonempty list of intervals and returns the set of intervals that has smallest cardinality among all sets of intervals whose unions are the same as the union of the list of intervals ls. For example:

minimize-interval-list : IntervalList  IntervalList

(minimize-interval-list '((1 3) (2 3)))

  ((1 3))

(minimize-interval-list '((1 2) (3 4)))

  ((1 2) (3 4))

(minimize-interval-list '((1 3) (8 10) (2 4) (9 11)))  ((1 4) (8 11))

(minimize-interval-list '((2 5) (1 7) (6 10) (10 11)))  ((1 11))

(minimize-interval-list '((1 2) (4 7) (1 2))  ((1 2) (4 7))

#9 (10 points) exists? EoPL 1.25, page 28.

#10 (10 points) list-index EoPL 1.23, page 27.

CS 304 Assignment 4
Page 4
03/17/10

