 CSSE 304
Assignment 3 53 points Updated for Fall, 2014
Objectives You should learn

· to write procedures that meet certain specifications.

· to practice using previously-written procedures as helpers for new procedures
· to write more complex recursive procedures in a functional style.

· to test your code thoroughly.

This is an individual assignment. You can talk to anyone you want and get as much help as you need, but you should type in the code and do the debugging process, as well as the submission process.
At the beginning of your file, there should be a comment that includes your name and the assignment number. Before the code for each problem, place a comment that includes the problem number. Place the code for the problems in order by problem number.
Turning in this assignment. Write all of the required procedures in one file, and upload it for assignment 3. You should test your procedures offline, using the test code file or other means, before submitting to the server.
Assume that arguments have the correct format. If a problem description says that an argument will have a certain type, you may assume that this is true; your code does not have to check for it.
Restriction on Mutation continues. As in the previous assignments, you will receive zero credit for a problem if any procedure that you write for that problem uses mutation or calls a procedure that mutates something.

Abbreviations for the textbooks:
EoPL
- Essentials of Programming Languages, 3rd Edition

TSPL
- The Scheme Programming Language, 3rd Edition

EoPL-1
- Essentials of Programming Languages, 1st Edition

Problems to turn in:

The first four problems refer to the point, line and vector framework from Assignment 2, which are repeated here.
You may copy into this assignment and use any of the procedures that you wrote for that assignment. In fact, the main goal of these problems is practice with using previously-written procedures as helpers for new procedures. The first three problems are straightforward, requiring no ifs or recursion.

#1 (5 points) Write the procedure (cross-product v1 v2) that returns the cross-product (vector product) of the

two vectors v1 and v2.

cross-product: Vector Vector  Vector

Examples:

 (cross-product '(1 3 4) '(3 6 2))  (-18 10 -3)
 (cross-product '(1 3 4) '(3 9 12))  (0 0 0)
#2 (5 points) Write the procedure (parallel? v1 v2) that returns #t if v1 and v2 are parallel vectors, #f otherwise. Note that the zero vector is parallel to everything. (You only have to guarantee that your procedure will work if the coefficients of both vectors are integers or rational numbers. Otherwise round-off error may make two parallel vectors appear to be non-parallel or vice-versa).

Parallel?: Vector Vector  Boolean

Examples:

 (parallel? '(1 3 4) '(3 6 2))  #f.

 (parallel? '(1 3 4) '(-3 -9 -12))  #t.

#3 (3 points) Write the procedure (collinear? p1 p2 p3) that returns #t if the points p1, p2, and p3 are all on the same straight line, #f otherwise. Same disclaimer about round-off error as in the previous problems.

 (collinear? '(1 3 4) '(3 6 2) '(7 12 -2)  #t

 (collinear? '(1 3 4) '(3 6 2) '(7 12 1)  #f.

#4 (10 points) Write the procedure (nearest-point p list-of-points) that returns the point in the non-empty list list-of-points that is closest to p. If two points "tie" for nearest, return the one that appears first in list-of-points.

nearest-point: Point  Listof(Point)  Point

Examples:
 (nearest-point '(1 2 1) '((7 5 0) (2 1 0) (-6 -7 -8)))  (2 1 0)

The next four problems refer to the definition of sets in Scheme from Assignment 2, which are repeated here.

#5 (10 points) Write the procedure (intersection s1 s2) The intersection of two sets is a set containing all items that occur in both sets (order does not matter). You may assume that both arguments are sets.
intersection: set set (set
Examples:

(intersection '(a f e h t b p) '(g c e a b))  (a e b) ; (or some permutation of it)

(intersection '(2 3 4) '(1 a b))  ()

 You may assume that the arguments are sets; you do not have to test for that. Again, use equal? as your test for duplicate items.

#6 (10 points) A set X is a subset of the set Y if every member of X is also a member of Y. The procedure (subset? s1 s2) takes two sets as arguments and tests whether s1 is a subset of s2. You may want to write a helper procedure. You may assume that both arguments are sets.

subset?: set set (Boolean
Examples

(subset? '(c b) '(a c d b e))  #t

(subset? '(c b) '(a d b e))  #f

(subset? '() '(a d b e))  #t

#7 (5 points) The union of two sets is the set of all items that occur in both sets (the order does not matter).

union: Set  Set  Set

Examples:

 (union '(a f e h t b) '(g c e a b))  (a f e h t b g c) ; (or some permutation of it)

 (union '(2 3 4) '(1 a b))  (2 3 4 1 a b) ; (or some permutation of it)

We will represent a point or a vector by a list of 3 numbers. For example, the list (5 6 -7) can represent either the vector 5i + 6j - 7k or the point (5, 6, -7). In the procedure type specifications below, I'll use Point and Vector as the names of the types, even though both will be implemented by the same underlying Scheme type.

Note that Scheme has a built-in vector type with associated procedures. This vector type is used for representing arrays. In order to avoid having your code conflict with this built-in type, you should use vec instead of vector in the names of your functions and their arguments. We could use the built-in vector type for this problem, but I choose not to do so, so that you can get additional practice with picking out parts of lists.

We represent a set by a (single-level) list of objects, which may themselves be lists. We say that such a list is a set if and only if it contains no duplicates. By this, I mean that no two items in the list are equal? .

CSSE 304 Assignment 3
Page 2
09/05/14

