 CSSE 304
Assignment 2

Objectives You should learn

· to write procedures that meet certain specifications.

· to use first-class procedures in simple ways.

· to write recursive procedures in a functional style.

· to test your code thoroughly.

Administrative preliminaries (most of these apply to later assignments also).

This is an individual assignment. You can talk to anyone you want and get as much help as you need, but you should type in the code and do the debugging process, as well as the submission process.

At the beginning of your file, there should be a comment that includes your name and the assignment number. Before the code for each problem, place a comment that includes the problem number. Please place the code for the problems in order by problem number.

Turning in this assignment. Write all of the required procedures in one file, and upload it for assignment A2 in the PLC grading program.

Restriction on Mutation continues. One of the main goals of the first few assignments is to introduce you to the functional style of programming, in which the values of variables are never modified. Until further notice, you may not use set! or any other built-in procedure whose name ends in an exclamation point. It will be best to not use any exclamation points at all in your code. You will receive zero credit for a problem if any procedure that you write for that problem uses mutation or calls a procedure that mutates something.

Abbreviations for the textbooks:
EoPL
- Essentials of Programming Languages, 3rd Edition

TSPL
- The Scheme Programming Language, 3rd Edition

EoPL-1
- Essentials of Programming Languages, 1st Edition

Reading Assignment see the schedule page
Some of the EOPL-1 reading covers topics similar to the reading in TSPL, but I believe it is good for you to get more than one perspective on this (in particular, a perspective that is similar to that of EoPL).

Problems to turn in:

#1 (5 points) (a) Write the procedure (fact n) which takes a non-negative integer n and returns n factorial.

fact : NonNegativeInteger  Integer

Examples:

 (fact 0) => 1

 (fact 1) => 1

 (fact 5) => 120

(b) Also write the procedure (choose n k) which returns the number different subsets of k items chosen from a set of n items. This is also known as the binomial coefficient. If you’ve forgotten the formula for this, a Google search for “Binomial Coefficient” should be helpful.

choose : NonNegativeInteger  NonNegativeInteger  NonNegativeInteger

Examples:

 (choose 0 0) => 1

 (choose 5 1) => 5

 (choose 10 5) => 252

#2 (8 points) Write the procedure (make-range m n) that returns the ordered list of integers starting at the integer m and increasing by one until just before the integer nis reached i.e. (do not include n in the resulting list). This is similar to Python's range function. If n is less than or equal to m, the function returns the empty list.
make-range : Integer  Integer  Listof(Integer)

Examples:

 (make-range 5 10) ((5 6 7 8 9)

 (make-range 5 6) ((5)

 (make-range 5 5) (()

#3 (10 points) In mathematics, we informally define a set to be a collection of items with no duplicates. In Scheme, we could represent a set by a (single-level) list. We say that a list is a set if and only if it contains no duplicates. By this, I mean that no two items in the list are equal? . Write the predicate(set? list), that takes any list as an argument and determines whether it is a set.

set? : list (Boolean
 (set? '())  #t ; empty set

 (set? '(1 (2 3) (3 2) 5))  #t ; (2 3) and (3 2) are not equal?

 (set? '(r o s e - h u l m a n))  #t

 (set? '(c o m p u t e r s c i e n c e))  #f

#4 (10 points) The procedure (intersection s1 s2) of two sets is a list of the items that occur in both sets (order does not matter). You may assume that both arguments are sets.
intersection: set set (set

(intersection '(a f e h t b p) '(g c e a b))  (a e b) ; (or some permutation of it)

(intersection '(2 3 4) '(1 a b))  ()

 You may assume that the arguments are sets; you do not have to test for that. Again, use equal? as your test for duplicate items.

#5 (10 points) A set X is a subset of the set Y if every member of X is also a member of Y. The procedure (subset? S1 s2) takes two sets as arguments and tests whether the first is a subset of the other. You may want to write a helper procedure. You may assume that both arguments are sets.

subset?: set set (Boolean

(subset? '(c b) '(a c d b e))  #t

(subset? '(c b) '(a d b e))  #f

(subset? '() '(a d b e))  #t

#6 (15 points) A relation is defined in mathematics to be a set of ordered pairs. The set of all items that appear as the first member of one of the ordered pairs is called the domain of the relation. The set of all items that appear as the second member of one of the ordered pairs is called the range of the relation. In Scheme, we can represent a relation as a list of 2-lists (a 2-list is a list of length 2). For example ((2 3) (3 4) (-1 0)) represents a relation with domain (2 3 –1) and range (3 4 0). Write the procedure (relation? Obj) that takes any Scheme object as an argument and determines whether or not it represents a relation. You will probably want to use set? from a previous exercise in your definition of relation?. [Note that because you were just getting started on Scheme, my tests for set? did not throw in any values that were not lists. Now you may want to go back and "beef up" your set? procedure so it returns #f if its argument is not a list.
relation?: scheme-object (Boolean

(relation? 5)  #f

(relation? '())  #t

(relation? '((a b) (b c)))  #t

(relation? '((a b) (b a) (b b) (a a)))  #t

(relation? '((a b) (b c d)))  #f

(relation? '((a b) (c d) (a b)))  #f

(relation? '((a b) (c d) "5"))  #f

(relation? '((a b) . (b c)))  #f

#7 (10 points) Write a procedure (domain r) that returns the set that is the domain of a given relation.

domain: relation (set
 (domain '((1 2) (3 4) (1 3) (1 6)))  (1 3) ; or some permutation of it

 (domain '())  ()

Note: Some of the problems in this assignment are quite challenging. Start soon.

Practice problems (not to be handed in)

If you feel somewhat shaky about the recursive programming problems in this assignment, or if any of these look interesting to you, you may want to try these problems for extra practice:

#P1 Write a procedure (sum-of-squares lon) that takes a (single-level) list of numbers , lon , and returns the sum of the squares of the numbers in lon.

(sum-of-squares '(1 3 5 7))  84

(sum-of-squares '())  0

#P2 The union of two sets is the set of all items that occur in both sets (the order does not matter).

(union '(a f e h t b) '(g c e a b))  (a f e h t b g c) ; (or some permutation of it)

(union '(2 3 4) '(1 a b))  (2 3 4 1 a b) ; (or some permutation of it)

#P3 A relation is reflexive if every element of the domain and range is related to itself. I.e., if (a b) is in the relation, so are (a a) and (b b). The procedure (reflexive? r) returns #t if relation r is reflexive and #f otherwise. You may assume that r is a relation.

(reflexive? '((a b) (b a) (b b) (a a)))  #t

 (reflexive? '((a b) (b c) (a c)))  #f

#P4 The predicate (matrix? obj) should return #t if obj is a matrix (a nonempty list of nonempty lists of numbers, with all sublists having the same length), and return #f otherwise.

(matrix? 5)
 #f

(matrix? "matrix")
 #f

(matrix? '(1 2 3))
 #f

(matrix? '((1 2 3)(4 5 6)))
 #t

(matrix? '#((1 2 3)(4 5 6)))
 #f

(matrix? '((1 2 3)(4 5 6)(7 8)))
 #f

(matrix? '((1)))
 #t

(matrix? '(()()()))
 #f

#P5 Each row of (matrix-transpose m) is a column of m and vice-versa.

(matrix-transpose '((1 2 3) (4 5 6)))  ((1 4) (2 5) (3 6))

(matrix-transpose '((1 2 3)))  ((1) (2) (3))

(matrix-transpose '((1) (2) (3)))  ((1 2 3))
CSSE 304 Assignment 2
Page 2
03/03/14

