
CSSE 304 Day 31 Summary

1. Back to writing code in CPS: Now with continuations represented as data structures instead of Scheme procedures.

Review of environment representations:
1. An environment is represented by a Scheme procedure

2. An environment is represented by a datatype.

Continuations as a datatype
• Continuation ADT

a. Interface
i. Various constructors (in our new implementation, will be created by define-datatype)

ii. (apply-continuation k val) (where k is a representation of a continuation)
b. We'll go through a process that is similar to what we did with environments
c. First represent a continuation by a Scheme procedure (most of the work is in the constructors)
d. Then define a continuation datatype (most of the work is in apply-k)

i. Continuation constructors are treated as primitive (in the CPS sense)
• Example of the transformation to data-structure continuations (live coding).

(define read-flatten-print
 (lambda ()
 (display "enter slist to flatten: ")
 (let ([slist (read)])
 (unless (eq? slist 'exit)
 (flatten-cps slist
 (make-k (lambda (val)
 (pretty-print val)
 (read-flatten-print))))))))

(define append-cps
 (lambda (L1 L2 k)
 (if (null? L1)
 (apply-k k L2)
 (append-cps (cdr L1)
 L2
 (make-k
 (lambda (appended-cdr)
 (apply-k k (cons (car L1)
 appended-cdr))))))))

(define flatten-cps
 (lambda (ls k)
 (if (null? ls)
 (apply-k k ls)
 (flatten-cps (cdr ls)
 (make-k (lambda (v)
 (if (list? (car ls))
 (flatten-cps (car ls)
 (make-k (lambda (u) (append-cps u v k))))
 (apply-k k (cons (car ls) v)))))))))

(define apply-k (lambda (k . vals) (apply k vals)))

(define make-k (lambda (v) v))

