
CSSE 304 Day 25 Summary (First we finish Day 24 material)

1. Succeed and fail continuations example: prod-cps

(define prod-cps ; fill in the continuations at the end
 (lambda (L succeed fail)
 (cond [(null? L) (succeed 1)]
 [(zero? (car L)) (fail)]
 [else (prod-cps (cdr L)

Another similar example, substitute-leftmost (you may want to annotate this:

(define substitute-leftmost
 (lambda (new old slist)
 (subst-left-cps
 new
 old
 slist
 (lambda (v) v) ; changed continuation
 (lambda () slist) ; unchanged continuation
)))

define subst-left-cps ; changed and unchanged are continuations
 (lambda (new old slist changed unchanged)
 (let loop ([slist slist] [changed changed] [unchanged unchanged])
 (cond
 [(null? slist) (apply-k unchanged)]
 [(symbol? (car slist))
 (if (eq? (car slist) old)
 (apply-k changed (cons new (cdr slist)))
 (loop (cdr slist)
 (make-k (lambda (substituted-cdr)
 (apply-k changed
 (cons (car slist) substituted-cdr))))
 unchanged))]
 [else ; car is an s-list
 (loop (car slist)
 (make-k (lambda (substituted-car)
 (apply-k changed (cons substituted-car (cdr slist)))))
 (make-k (lambda ()
 (loop (cdr slist)
 (make-k (lambda (substituted-cdr)
 (apply-k changed
 (cons (car slist)
 substituted-cdr))))
 unchanged))))]))))

(define print-list-product
 (lambda (list)
 (prod-cps list
 (lambda (prod)
 (printf "The product is ~s~n" prod))
 (lambda ()
 (printf "zero found, product is 0”)

(define apply-continuation
 (lambda (k . v)
 (apply k v)))

Add letrec to the interpreted language.
We only handle a special case of letrec, where all letrec variables are bound to procedures.

Concrete syntax: (letrec ([var <lambda-exp>] ...) body body2 . . .)

Abstract syntax: a new variant for the expression datatype:
[letrec-exp
 (proc-names (list-of symbol?))
 (idss (list-of (list-of symbol?)))
 (bodiess (list-of (list-of expression?)))
 (letrec-bodies (list-of expression?))]

Letrec evaluation

– Closures are created and added to the letrec environment. Bodies of the letrec are evaluated in order.
– When one of the letrec closures is applied, new environment must extend the letrec environment

• If it were let instead of letrec, the new env when closure is applied would extend the enclosing environment instead

(define eval-exp
 (lambda (exp env)
 (cases expression exp
 . . .
 [letrec-exp
 (proc-names idss bodiess letrec-body)
 (eval-bodies letrec-bodies
 (extend-env-recursively
 proc-names idss bodiess env))]

0. Implement extend-env-recursively in terms of Scheme's letrec.

1. No mutation: A new kind of environment extension:
 recursively-extended-env-record

2. Mutation: A normal extended environment, but it uses vector-set! to fix things up.

3. No-mutation details:
(define extend-env-recursively
 (lambda (proc-names idss bodies old-env)
 (recursively-extended-env-record
 proc-names idss bodies old-env)))

New case for apply-env
[recursively-extended-env-record
 (procnames idss bodies old-env)
 (let ([pos
 (list-find-position sym procnames)])
 (if (number? pos)
 (closure (list-ref idss pos)
 (list-ref bodies pos)
 env)
 (apply-env old-env sym)))])))

Mutation solutions: Modified ribcage approach, syntax-expand approach. Details on slides (may happen on
the next class day).

 So the question becomes: how do we implement extend-env-recursively?

(define-datatype environment environment?
 [empty-env-record]
 [extended-env-record
 (syms (list-of symbol?))
 (vals (list-of scheme-value?))
 (env environment?)]
 [recursively-extended-env-record
 (proc-names (list-of symbol?))
 (idss (list-of (list-of symbol?)))
 (bodiess (list-of (list-of expression?)))
 (env environment?)])

Today I include a
lot of code from
the slides so you
can annotate it as
we discuss it.

