CSSE 304 Day 24

1. Rewrite in CPS form (treat memq as substantial, thus we call memq-cps)

(define intersection
(lambda (losl los2)
(cond [(null? losl) '()]
[(memg (car losl) los2)
(cons (car losl)
(intersection (cdr losl) los2))]
[else (intersection (cdr losl) los2)])))

2. (define free-vars-cps ; convert to CPS
(lambda (exp k)
(cond [(symbol? exp)

[(eq? (1st exp) "lambda)

[else

D)

3.
(define union-cps

(lambda (sl s2 k)
(Gf (null? s1)

)))



4.
(define remove-cps
(lambda (element Is k)
(f (null? Is)

)

5. Succeed and fail continuations example: prod-cps

(define prod-cps ; fill in the continuations at the end

(lambda (L succeed fail) . . .
(cond [(null? L) (succeed 1)] (define prlqt—llst—product
[(zero? (car L)) (faiD] (lambda (list)
[else (prod-cps (cdr L) (prod-cps list
(lambda (prod)
(printf "The product is ~s~n" prod))
(lambda ()
(printf "zero found, product is ©”)

Another similar example, substitute-leftmost (you may want to annotate this:

(define substitute-leftmost
(lambda (new old slist)
(subst-left-cps
new
old
slist
(lambda (v) v) ; changed continuation
(lambda () slist) ; unchanged continuation

D))

define subst-left-cps ; changed and unchanged are continuations
(lambda (new old slist changed unchanged)
(let loop ([slist slist] [changed changed] [unchanged unchanged])
(cond

[(null? slist) (apply-k unchanged)]

[(symbol? (car slist))

(if (eq? (car slist) old)

(apply-k changed (cons new (cdr slist)))
(loop (cdr slist)
(make-k (lambda (substituted-cdr)
(apply-k changed
(cons (car slist) substituted-cdr))))
unchanged))]
[else ; car is an s-list
(loop (car slist)
(make-k (lambda (substituted-car)
(apply-k changed (cons substituted-car (cdr slist)))))
(make-k (lambda
(loop (cdr slist)
(make-k (lambda (substituted-cdr)
(apply-k changed
(cons (car slist)

substituted-cdr))))
unchanged))))>1))))



