
CSSE 304 Day 24

1. Rewrite in CPS form (treat memq as substantial, thus we call memq-cps)

(define intersection
 (lambda (los1 los2)
 (cond [(null? los1) '()]
 [(memq (car los1) los2)
 (cons (car los1)
 (intersection (cdr los1) los2))]
 [else (intersection (cdr los1) los2)])))

2. (define free-vars-cps ; convert to CPS
 (lambda (exp k)
 (cond [(symbol? exp)

]
 [(eq? (1st exp) 'lambda)

]
 [else

])))

3.

(define union-cps
 (lambda (s1 s2 k)
 (if (null? s1)

)))

4.
(define remove-cps
 (lambda (element ls k)
 (if (null? ls)

)))

5. Succeed and fail continuations example: prod-cps

(define prod-cps ; fill in the continuations at the end
 (lambda (L succeed fail)
 (cond [(null? L) (succeed 1)]
 [(zero? (car L)) (fail)]
 [else (prod-cps (cdr L)

Another similar example, substitute-leftmost (you may want to annotate this:

(define substitute-leftmost
 (lambda (new old slist)
 (subst-left-cps
 new
 old
 slist
 (lambda (v) v) ; changed continuation
 (lambda () slist) ; unchanged continuation
)))

define subst-left-cps ; changed and unchanged are continuations
 (lambda (new old slist changed unchanged)
 (let loop ([slist slist] [changed changed] [unchanged unchanged])
 (cond
 [(null? slist) (apply-k unchanged)]
 [(symbol? (car slist))
 (if (eq? (car slist) old)
 (apply-k changed (cons new (cdr slist)))
 (loop (cdr slist)
 (make-k (lambda (substituted-cdr)
 (apply-k changed
 (cons (car slist) substituted-cdr))))
 unchanged))]
 [else ; car is an s-list
 (loop (car slist)
 (make-k (lambda (substituted-car)
 (apply-k changed (cons substituted-car (cdr slist)))))
 (make-k (lambda ()
 (loop (cdr slist)
 (make-k (lambda (substituted-cdr)
 (apply-k changed
 (cons (car slist)
 substituted-cdr))))
 unchanged))))]))))

(define print-list-product
 (lambda (list)
 (prod-cps list
 (lambda (prod)
 (printf "The product is ~s~n" prod))
 (lambda ()
 (printf "zero found, product is 0”)

