CSSE 304 Day 14 Summary

1.	Some more define-syntax examples: for (live coding)		
2.	What do	o we mean by data? information?	
2	What are the three residues of an abstract detains?		
3.	a.	re the three main ingredients of an abstract datatype?	
	b. с.		
4.	Specific	eation and possible representations/implementations of "non-negative integers" ADT.	
	a.	The four base (defining) operations (procedures): i. zero iszero? succ pred (may be undefined for input zero)	
	b.	Sample derived operation: add. Write it in terms of the base operations:	
	c.	Implementation 1: Unary. $\lceil 0 \rceil = '()$ $\lceil n+1 \rceil = (\cos \#t \lceil n \rceil)$. How to define operations in Scheme's Other implementations are in the online slides. Due to time constraints, will not do them in class.	

5.		ate data types: Arrays
	b.	Records
	c.	Union types
6.	define a.	-datatype. A way to define new (possibly recursive) "record" types with type-checking for the fields. define-datatype creates constructors for immutable variant records.
	b.	Constructors check the types of the fields and report an error if incorrect
	c.	cases is used to get references to the various fields.
	d.	Details of syntax for defining and using datatypes are in the slides.
	e.	We examine datatypes for binary trees, s-lists, lambda-calculus expressions.
7.	Code is	data. In Scheme, both have the same form. eval treats code as data. Don't use it in your interpreter project code!
8.	A dataty	pe for lambda-calculus expressions (you will extend this definition to include other Scheme syntax).

(define-datatype expression expression?

[var-exp

[app-exp

(id symbol?)]
[lambda-exp
 (id symbol?)

(body expression?)]

(rator expression?)
(rand expression?)])

9. How will the app-exp variant of the expression datatype change if

we allow any number of arguments in a procedure application?