=LcExpr= = <identifier=

variable use

(lambda (<identifier>) <[.cExpr=) | abstraction
(=LeExpr> <LcExpr>) application

CSSE 304 Day 12

1. Free and bound Examples: In each of the following
expressions, does x occur free and/or occur bound?
a) X

Variable x occurs free in the LcExp e iff
one of the following is true:
F1. eisavariable, and e is the same
as X.
F2. e is an abstraction (A (y) €'), where
y is different from x and x occurs free
c) (x9 ine'.
F3. e is an application (e1 e2), where
x occurs free in ez orin ez.
d) (lambda (x) (x 1)) Variable x occurs bound in the LcExp e iff
one of the following is true:
B1. e is an abstraction (A (y) €,
where x occurs bound in €', or x and y
are the same variable and x occurs
freeine'
B2. e is an application (e1 e2) where
X occurs bound in e1or in ez.

b) t

e) ((lambda (x) x) x)

f) (lambda (x) (lambda (t) (t x)))

(define occurs-bound?

(lambda (sym exp)
(cond

2. The lexical depth of a bound occurrence of a variable is the number of levels of nested 1ambdas and 1ets between this
occurrence and the variable's definition. In
(lambda (z)
(lambda (x)

(lambda (y) (x y)))),
the occurrence of y has depth 0 and the occurrence of x has depth 1. There is no occurrence of z.

3. The lexical address of a bound occurrence of a variable is a pair (d p), where d is that occurrence's lexical depth, and p is the
variable's position within its "declaration list". The lexical address of a free variable includes the variable's name and an
indication that it is free.

4. Example: The occurrence of x has depth 1 and position 0.
In (lambda (x 2) The occurrence of y has depth 0 and position 0.
(lambda (y) The occurrence of z has depth 1 and position 1.

((xy) 2)))

5. Example of output from the lexical-address procedure that you will write:

(lexical-address '(lambda (a b c) (lambda (a b c)
(if (eg? b ¢)
((lambda (c)
(cons a c))
a) (
b))) > (

((lambda (c)

((: free cons)
: 0 0))

10 1)))

6. Lexical address exercises (also see example that comes before these in the slides).
(lexical-address

"((lambda (x y)

(((lambda (2)
(lambda (w y)

¢+ xzwy)))
(list w X y 2))
¢+ xy 2)))

<~ 2))

(lexical-address
"(let (Ja 3] [b 4D
(let ([a (+ b 2)] [c al)
(+ abc)))

(if ((: free eq?) (: @ 1) (: @ 2))

(:

10) (: 0890)))

> (reversel T()]
{
> (reverse! '"(a b o))
ic b aj
e L "{abcd))
> (reverzse! L)
> Lreverse Ti)) (d o b a)
{3 . L
= (reverse "{(a b c)) (a)
(o b oa) :
> ([x "(a b c)] > [é[TCdéaX?]c)]
[v (cd 1]
[g (Eeieise x) 1) [z (reversel x)])
{list % z {eq? v {cdr z)))) (list =% z f(eq? v (cdr z))))
{{fa b c) (cba) #f) ({a) (c b a) #t)

