
CSSE 304 Day 06 Summary

1. Given the box-and-pointer diagram on the slide, how would Scheme output this object?

Try to write code that creates this object without using quote.

More Practice with box-and-pointer diagrams: Draw the diagrams for the structures that get created when the
following code is executed, then show what it outputs. What if we then do (set-cdr! v v)?
Suggestion: Work with another student.

(define v (cons 'a 'b))

(define w (list 'a 'b))

(define x '((1 2) 3 (4 5)))

(define y (cons (car x) (cdr x)))

(define z (cons (cdr x) x))

(define t (append w x))

(write v) (newline)

(write w) (newline)

(write x) (newline)

(write y) (newline)

(write z) (newline)

(write t) (newline)

(set-cdr! v v)

v

2. What does the box-and pointer diagram for '(()) look like?
How about '((())), '(((()))), and '((())()) ?

3. Map and apply examples
a. (map < '(1 5 7) '(2 4 6))

b. (map list '(1 5 7) '(2 4 6) '(0 8 3))

c. (apply cons '(2 3))

d. (list '()) (map list '()) (apply list '())

e. (define ms-size
 (lambda (ms) (apply + (map cadr ms))

f. (define cube (lambda(x) (* x x x)))
(define apply-many
 (lambda (functions arg)
 (map (lambda (function)
 (apply function (list arg)))
 functions))
(apply-many (list - cube (lambda (x) (/ x 2))) 3)
(apply-many '(- cube (lambda (x) (/ x 2))) 3)
(apply-many `(,- ,cube ,(lambda (x) (/ x 2))) 3)

g. (apply + 1 2 '(3 4 5)) ; a different form of apply?

4. With another student (pair programming) write largest-in-lists, which takes a list of lists of numbers and
returns the largest number. Returns #f if there are no numbers in any of the lists. Don't use any separate
recursive helper procedures (instead get practice with letrec and/or named let). You may want to test it
with some simpler lists before trying the test cases on the server.

 (largest-in-lists '((1 3 5) () (4) (2 6 1) (4)))  6
 (largest-in-lists '(() ()))  #f

http://www.scheme.com/tspl4/control.html

