
CSSE 304 Day 05 Summary

1. positives and sorted?

2. lambda is magnificent! I suggest that you not try to copy the transcript from the slide (you can look at it
anytime), but instead use this space to make notes on what is happening there.

3. Properties of a first-class data object:

4. Local variables via let and let*

 is equivalent to

What goes wrong with ?

 translates to

(define L '(4 3 2))
(let ([first (car L)]
 [second (cadr L)])
 (list (+ first second) (- first second)))

(define L '(4 3 2))
((lambda (first second)
 (list (+ first second) (- first second)))
 (car L)
 (cadr L))

(define xxx
 (lambda (L)
 (let ([a (car L)]
 [b (cdr L)]
 [c (car b)])
 (list c a))))
(xxx '(1 2 3))

(define xxx
 (lambda (L)
 (let* ([a (car L)]
 [b (cdr L)]
 [c (car b)])
 (list c a))))

(define xxx
 (lambda (L)
 (let ([a (car L)])
 (let ([b (cdr L)])
 (let ([c (car b)])
 (list c a))))))

5. A place for your notes about the "Abe Lincoln" fact example (code is in the “Live in class” folder)

6. How is letrec different than let and let*?

7. Translate the named-let code below into letrec-based code.

(define fact
 (lambda (n)
 (let loop ([x n] [prod 1])
 (if (zero? x)
 prod
 (loop (- x 1) (* prod x))))))

8. Given the box-and-pointer diagram on the slide, how would Scheme output this object?

Try to write code that creates this object without using quote.

