
CSSE 304 Day 04 Summary

1. cons vs. list vs. append (box-and-pointer diagrams)
a. (define x '(1 2 3)) (define y '(4 5))

b. (cons x y)

(list x y)

(append x y)

2. apply applies a procedure to the elements of a list: (apply cons '(2 4)) is the same as (cons 2 4).

Other examples: [if apply did not exist, could we write it?]

3. Reflexive pairs.
A relation is a set of ordered pairs; the set of all first elements is the domain. The set of all second elements is the range.

 We represent a relation by a list of 2-lists. A 2-list is a list whose length is 2.
 A reflexive pair is a 2-list whose first and last elements are the same.
 count-reflexive-pairs (work it out live)

4. (make-list n obj) returns a list of n "copies" of obj. [If obj is a "by-reference" object, such as a list, it
makes n copies of the reference].

5. (firsts '((a b) (c d) (e f)))  (a c e)

6. Map-unary applies a unary procedure to every element of a list and returns the list of the results.
(map-unary positive? '(2 -1 3 4))  (#t #f #t #t) .

7. Use map-unary to rewrite firsts. [Note: map-unary has the same interface as built-in procedure map]

8. (positives ′(1 -3 6 0 2 -1 7))  (1 6 2 7)

9. (sorted? < '(3 4 2 6))  #f ; Hint: Use or and and.
(sorted? > '(4 3 2 1))  #t ; assume 2nd arg is a list of numbers

