
Name: ___________________________ Section: ____

Name: ___________________________ Section: ____

Name: ___________________________ Section: ____

Practical 05
Read and perform the practical guide. Answer the questions after you have completed the
practical. Be sure to keep the formatting of 1-2 questions per page.

[4] (Need) Highlight the datapath for R type instructions:

[4] (Correctness/Iteration) Take a screenshot of the ModelSim running tb_processor for R
type tests. This should include the waveform with adequate signals grouped for organization
as well as the transcript documenting the instructions you are running for the test.

Replace this textbox with your screenshot

[4] (Need) Highlight the datapath for I type instructions:

[4] (Correctness/Iteration) Take a screenshot of the ModelSim running tb_processor for I
type tests. This should include the waveform with adequate signals grouped for organization
as well as the transcript documenting the instructions you are running for the test.

Replace this textbox with your screenshot

[4] (Need) Highlight the datapath for sw and lw:

[4] (Correctness/Iteration) Take a screenshot of the ModelSim running tb_processor for lw
and sw. This should include the waveform with adequate signals grouped for organization as
well as the transcript documenting the instructions you are running for the test.

Replace this textbox with your screenshot

[4] (Need) Highlight the datapath for SB type instructions:

[4] (Correctness/Iteration) Take a screenshot of the ModelSim running tb_processor for SB
type tests. This should include the waveform with adequate signals grouped for organization
as well as the transcript documenting the instructions you are running for the test.

Replace this textbox with your screenshot

[8] (Correctness) How did you choose what instructions to include for your testbenches? What
strategy/thinking process did you follow in order to ensure your set of testbench instructions
sufficiently checks the validity of your processor (make sure to discuss this with specific
reference to each instruction type implemented)? Discuss how you ensured adequate
coverage of the variety of instructions, registers, immediates, etc.

[8] (Correctness) Below is a timing diagram:

Consider two instructions that runs on the single-cycle processor:

1. add a0, t1, t2
2. lw t3, 8(t4)

Fill out the following table indicating which of the following clocked operations are performed:

• add’s instruction read
• add’s register read
• add’s register write
• add’s ALU operation
• add’s PC write

• lw’s instruction read
• lw’s register read
• lw’s register write
• lw’s ALU operation
• lw’s memory read
• lw’s PC write

Clock Timing Operation(s)

1st posedge add’s instruction read

1st high level

1st negedge

1st low level

2nd posedge lw’s instruction read

2nd high level

2nd negedge

2nd low level

3rd posedge

1st posedge

1st negedge

2nd posedge

2nd negedge

3rd posedge

[8] Need I asked ChatGPT the following prompt: “For the components of PC, instruction
memory, register file, and data memory in a RISC-V processor, how should these components
be clocked for a single-cycle architecture?”. ChatGPT explained that all components must
complete their operations within one clock cycle, and thus suggested the following clock
timings:

Component Clocked? Operation Timing

PC Yes Updated at clock edge (start of cycle)

Instruction Memory No Combinational read (fetch phase)

Register File Yes (write) Read: combinational
Write: clocked

Data Memory Yes Read/Write usually clocked

Ignoring the fact that ChatGPT did not detail posedge and negedge timing, will this proposed
set of clock timing work? Why or why not?

Full ChatGPT transcript can be found at the end of the worksheet.

[8] (Performance) Explain how this single-cycle implementation might have a bunch of
"unused time" during a clock cycle.

[8] (Correctness) Describe the most important thing your team had to test in the process of
implementing branches.

 [8] (Iteration) Explain whether implementing beq first before implementing the entire branch
datapath was or was not necessary for your group’s implementation process.

[8] What was the biggest challenge in implementing and testing the single cycle datapath?
Explain in 100 words or less.

[10] What is the single biggest thing you learned from writing tests for this practical? Explain in
100 words or less.

[0] What is the git commit ID for your final commit of your code. This is required to pass the
assignment. Check Practical 1 for instructions on how to get the correct commit ID.

For the components of PC, instruction memory,
register file, and data memory in a RISC-V processor,

how should these components be clocked for a
single-cycle architecture?

In a single-cycle RISC-V architecture, all components must complete their operations within one
clock cycle. This means the entire instruction fetch, decode, execution, memory access, and write
back phases happen in one cycle. For this to work, certain timing conventions must be followed:

1. Program Counter (PC)
• Clocked: Yes.
• Why: The PC needs to update at the start of every cycle with the address of the next

instruction. This is typically triggered on the rising edge of the clock.
• Update timing: New PC value is computed during the cycle and loaded into the PC at the

next clock edge.
2. Instruction Memory

• Clocked: No.
• Why: It behaves like a combinational read-only memory (ROM) in single-cycle designs. As

soon as the PC is provided as input, the corresponding instruction is immediately available
(with some access delay).

• Read timing: Combinational; instruction is read as soon as the PC value is known.
3. Register File

• Clocked: Yes (for write operations).
• Why:

o Reads: Are combinational; register data is available as soon as register numbers
are provided.

o Writes: Happen on the rising edge of the clock. The register to be written, write
data, and write-enable signal must be stable before the clock edge.

• Write timing: Occurs at the end of the cycle, allowing the write-back stage to complete its
computation.

4. Data Memory
• Clocked: Yes.
• Why: Like the register file, reads and writes are typically performed on the clock edge,

though reads may be combinational depending on implementation.
• Read timing:

o If combinational: Output appears once address is stable (usually assumed in
single-cycle).

o If synchronous: Read occurs at clock edge (less common for single-cycle).
• Write timing: On the rising edge, controlled by a write-enable signal.

