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Chapter 1

Synthesis and Simulation Overview
This chapter provides general information about the Synthesis and Simulation Design
Guide. This chapter describes the Synthesis and Simulation Design Guide Overview and
provides Synthesis and Simulation Design Guide Design Examples.

Synthesis and Simulation Overview
The Synthesis and Simulation Design Guide provides a general overview of designing Field
Programmable Gate Array (FPGA) devices using a Hardware Description Language
(HDL). It includes design hints for the novice HDL user, as well as for the experienced
user who is designing FPGA devices for the first time. Before using the Synthesis and
Simulation Design Guide, you should be familiar with the operations that are common
to all Xilinx® tools.

The Synthesis and Simulation Design Guide does not address certain topics that are
important when creating HDL designs, such as:

• Design environment

• Verification techniques

• Constraining in the synthesis tool

• Test considerations

• System verification

For more information, see your synthesis tool documentation.
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Synthesis and Simulation Design Examples
The design examples in this Guide were:

• Created with VHDL and Verilog

Xilinx® endorses Verilog and VHDL equally. VHDL may be more difficult to learn
than Verilog, and usually requires more explanation.

• Compiled with various synthesis tools

• Targeted for the following devices:

– Spartan®-3

– Spartan-3E

– Spartan-3A

– Spartan-6

– Virtex®-4

– Virtex-5

– Virtex-6

– Virtex-7

– Kintex™-7

Synthesis and Simulation Design Guide
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Chapter 2

Hardware Description Language (HDL)
This chapter describes Hardware Description Language (HDL). This chapter elaborates
on the Advantages of Using a Hardware Description Language (HDL) to Design
FPGA Devices andDesigning FPGA Devices With Hardware Description Language
(HDL). Designers use an HDL to describe the behavior and structure of system and
circuit designs. Understanding FPGA architecture allows you to create HDL code that
effectively uses FPGA system features. To learn more about designing FPGA devices
with HDL:
• Enroll in training classes offered by Xilinx® and by synthesis tool vendors.
• Review the HDL design examples in this Guide.
• Download design examples from Xilinx Support.
• Take advantage of the many other resources offered by Xilinx, including:

– Documentation
– Tutorials
– Service packs
– Telephone hotline
– Answers database

For more information, see Additional Resources.

Advantages of Using a Hardware Description Langua ge (HDL)
to Design FPGA Devices

Using a Hardware Description Language (HDL) to design high-density FPGA devices
has the following advantages:
• Top-Down Approach for Large Projects
• Functional Simulation Early in the Design Flow
• Synthesis of Hardware Description Language (HDL) Code to Gates
• Early Testing of Various Design Implementations
• Reuse of Register Transfer Level (RTL) Code

Top-Down Appr oach for Large Projects
Designers use a Hardware Description Language (HDL) to create complex designs. The
top-down approach to system design works well for large HDL projects that require
many designers working together. After the design team determines the overall design
plan, individual designers can work independently on separate code sections.

Synthesis and Simulation Design Guide
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Chapter 2: Hardware Description Langua ge (HDL)

Functional Simulation Early in the Design Flow
You can verify design functionality early in the design flow by simulating the HDL
description. Testing your design decisions before the design is implemented at the
Register Transfer Level (RTL) or gate level allows you to make any necessary changes
early on.

Synthesis of Hardware Description Langua ge (HDL) Code to Gates
Synthesizing your hardware description to target the FPGA device implementation:

• Decreases design time by allowing a higher-level design specification, rather than
specifying the design from the FPGA device base elements.

• Reduces the errors that can occur during a manual translation of a hardware
description to a schematic design.

• Allows you to apply the automation techniques used by the synthesis tool (such
as machine encoding styles and automatic I/O insertion) during optimization to
the original Hardware Description Language (HDL) code. This results in greater
optimization and efficiency.

Early Testing of Various Design Implementations
Using a Hardware Description Language (HDL) allows you to test different design
implementations early in the design flow. Use the synthesis tool to perform the logic
synthesis and optimization into gates.

Xilinx® FPGA devices allow you to implement your design at your computer. Since the
synthesis time is short, you have more time to explore different architectural possibilities
at the Register Transfer Level (RTL) You can reprogram Xilinx FPGA devices to test
several design implementations.

Reuse of Register Transf er Level (RTL) Code
You can retarget Register Transfer Level (RTL) code to new FPGA devices with
minimum recoding.

Designing FPGA Devices With Hardware Description Langua ge
(HDL)

This section discusses Designing FPGA Devices With Hardware Description Language
(HDL), and includes:

• About Designing FPGA Devices With Hardware Description Language (HDL)

• Designing FPGA Devices with VHDL

• Designing FPGA Devices with Verilog

• Designing FPGA Devices with Synthesis Tools

• Improving Device Performance Using FPGA System Features

• Designing Hierarchy

• Specifying Speed Requirements

Synthesis and Simulation Design Guide
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About Designing FPGA Devices With Hardware Description Langua ge
(HDL)

If you are used to schematic design entry, you may find it difficult at first to create
Hardware Description Language (HDL) designs. You must make the transition from
graphical concepts, such as block diagrams, state machines, flow diagrams, and truth
tables, to abstract representations of design components. To ease this transition, keep
your overall design plan in mind as you code in HDL.

To effectively use an HDL, you must understand the:
• Syntax of the language
• Synthesis and simulator tools
• Architecture of your target device
• Implementation tools

Designing FPGA Devices with VHDL
VHSIC Hardware Description Language (VHDL) is a hardware description language for
designing integrated circuits. Since VHDL was not originally intended as an input to
synthesis, many VHDL constructs are not supported by synthesis tools. The high level
of abstraction of VHDL makes it easy to describe the system-level components and test
benches that are not synthesized. In addition, the various synthesis tools use different
subsets of VHDL.

The examples in this Synthesis and Simulation Design Guide work with most FPGA
synthesis tools. The coding strategies presented in the remaining sections of this Guide
can help you create Hardware Description Language (HDL) descriptions that can be
synthesized.

Designing FPGA Devices with Verilog
Verilog is popular for synthesis designs because:
• Verilog is less verbose than traditional VHDL.
• Verilog is standardized as IEEE-STD-1364-95 and IEEE-STD-1364-2001.

Since Verilog was not originally intended as an input to synthesis, many Verilog
constructs are not supported by synthesis tools. The Verilog coding examples in this
Guide were tested and synthesized with current, commonly-used FPGA synthesis tools.
The coding strategies presented in the remaining sections of this Guide can help you
create Hardware Description Language (HDL) descriptions that can be synthesized.

SystemVerilog is a new emerging standard for both synthesis and simulation. It is
not known if, or when, this standard will be adopted and supported by the various
design tools.

Whether or not you plan to use this new standard, Xilinx® recommends that you:
• Review the standard to ensure that your current Verilog code can be readily carried

forward as the new standard evolves.
• Review any new keywords specified by the standard.
• Avoid using the new keywords in your current Verilog code.

Designing FPGA Devices with Synthesis Tools
Most synthesis tools have special optimization algorithms for Xilinx® FPGA devices.
Constraints and compiling options perform differently depending on the target device.
Some commands and constraints in ASIC synthesis tools do not apply to FPGA devices.
If you use them, they may adversely impact your results.

Synthesis and Simulation Design Guide
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Chapter 2: Hardware Description Langua ge (HDL)

You should understand how your synthesis tool processes designs before you
create FPGA designs. Most FPGA synthesis vendors include information in their
documentation specifically for Xilinx FPGA devices.

Improving Device Performance Using FPGA System Features
To improve device performance, area utilization, and power characteristics, create
Hardware Description Language (HDL) code that uses FPGA system features such as
DCM, multipliers, shift registers, and memory. For a description of these and other
features, see the device data sheet,user guide, and Additional Resources.

The choice of the size (width and depth) and functional characteristics must be taken
into account by understanding the target FPGA resources and making the proper system
choices to best target the underlying architecture.

Designing Hierar chy
Using a Hardware Description Language (HDL) gives added flexibility in describing the
design. Not all HDL code is optimized the same. How and where the functionality is
described can have dramatic effects on end optimization. For example:

• Certain techniques may unnecessarily increase the design size and power while
decreasing performance.

• Other techniques can result in more optimal designs in terms of any or all of those
same metrics.

This Guide will help instruct you in techniques for optional FPGA design methodologies.

Design hierarchy is important in both the implementation of an FPGA and during
interactive changes. Some synthesizers maintain the hierarchical boundaries unless you
group modules together. Modules should have registered outputs so their boundaries
are not an impediment to optimization. Otherwise, modules should be as large as
possible within the limitations of your synthesis tool.

The “5,000 gates per module” rule is no longer valid, and can interfere with optimization.
Check with your synthesis vendor for the preferred module size. As a last resort, use
the grouping commands of your synthesizer, if available. The size and content of the
modules influence synthesis results and design implementation. This Guide describes
how to create effective design hierarchy.

Specifying Speed Requirements
To meet timing requirements, you must set timing constraints in both the synthesis tool
and the placement and routing tool. If you specify the desired timing at the beginning,
the tools can maximize not only performance, but also area, power, and tool runtime.

This may result in a design that:

• Achieves the desired performance

• Is smaller

• Consumes less power

• Requires less processing time

For more information, see Setting Constraints.
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Chapter 3

FPGA Design Flow
This chapter describes the steps in a typical FPGA design flow.

Design Flow Diagram

Design Entr y Recommendations
Xilinx® recommends the following for design entry:
• Use Register Transfer Level (RTL) Code
• Select the Correct Design Hierarchy

Synthesis and Simulation Design Guide
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Use Register Transf er Level (RTL) Code
Use Register Transfer Level (RTL) code, and, when possible, do not instantiate specific
components. Following these two practices allows for:
• Readable code
• Ability to use the same code for synthesis and simulation
• Faster and simpler simulation
• Portable code for migration to different device families
• Reusable code for future designs

In some cases instantiating optimized CORE Generator™ software modules is beneficial
with RTL.

Select the Correct Design Hierar chy
Select the correct design hierarchy to:
• Improve simulation and synthesis results
• Improve debugging
• Allow parallel engineering, in which a team of engineers can work on different parts

of the design at the same time
• Improve placement and routing by reducing routing congestion and improving

timing
• Allow for easier code reuse in both current and future designs

Architecture Wizard
Use ArchitectureWizard to configure advanced features of Xilinx® devices. Architecture
Wizard consists of several components for configuring specific device features. Each
component functions as an independent wizard. For more information, see Architecture
Wizard Components.

Architecture Wizard creates a VHDL, Verilog, or Electronic Data Interchange Format
(EDIF) file, depending on the flow type passed to it. The generated Hardware
Description Language (HDL) output is a module consisting of one or more primitives
and the corresponding properties, and not just a code snippet. This allows the output
file to be referenced from the HDL Editor. No User Constraints File (UCF) is output,
since the necessary attributes are embedded inside the HDL file.

Opening Architecture Wizard
You can open Architecture Wizard from:
• ISE® Design Suite

For more information, see the ISE Help, especiallyWorking with Architecture Wizard
IP.

• The CORE Generator™ software
Select any of the Architecture Wizard IP from the list of available IP in the CORE
Generator software window.

• The command line
Type arwz .

Synthesis and Simulation Design Guide
14 www.xilinx.com UG626 (v13.4) January 19, 2012



Chapter 3: FPGA Design Flow

Architecture Wizard Components
Architecture Wizard components include:
• Clocking Wizard
• RocketIO™ Wizard
• ChipSync Wizard
• XtremeDSP Slice Wizard

Clocking Wizard
The Clocking Wizard enables:
• Digital clock setup
• DCM and clock buffer viewing
• DRC checking

The Clocking Wizard allows you to:
• View the DCM component
• Specify attributes
• Generate corresponding components and signals
• Execute DRC checks
• Display up to eight clock buffers
• Set up the Feedback Path information
• Set up the Clock Frequency Generator information and execute DRC checks
• View and edit component attributes
• View and edit component constraints
• View and configure one or two Phase Matched Clock Dividers (PMCDs) in a

Virtex®-4 device
• View and configure a Phase Locked Loop (PLL) in a Virtex-5 device
• Automatically place one component in the XAW file
• Save component settings in a VHDL file
• Save component settings in a Verilog file

RocketIO Wizard
The RocketIO Wizard enables serial connectivity between devices, backplanes, and
subsystems.

The RocketIO Wizard allows you to:
• Specify RocketIO type
• Define Channel Bonding options
• Specify General Transmitter Settings, including encoding, CRC, and clock
• Specify General Receptor Settings, including encoding, CRC, and clock
• Provide the ability to specify Synchronization
• Specify Equalization, Signal integrity tip (resister, termination mode ...)
• View and edit component attributes
• View and edit component constraints
• Automatically place one component in the XAW file
• Save component settings to a VHDL file or Verilog file

Synthesis and Simulation Design Guide
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ChipSync Wizard
The ChipSync Wizard applies to Virtex-4 devices and Virtex-5 devices only.

The ChipSync Wizard:

• Facilitates the implementation of high-speed source synchronous applications.

• Configures a group of I/O blocks into an interface for use in memory, networking, or
any other type of bus interface.

• Creates Hardware Description Language (HDL) code with these features configured
according to your input:

– Width and IO standard of data, address, and clocks for the interface

– Additional pins such as reference clocks and control pins

– Adjustable input delay for data and clock pins

– Clock buffers (BUFIO) for input clocks

– ISERDES/OSERDES or IDDR/ODDR blocks to control the width of data, clock
enables, and tristate signals to the fabric

XtremeDSP Slice Wizard
The XtremeDSP Slice Wizard applies to Virtex-4 devices and Virtex-5 devices only.

The XtremeDSP Slice Wizard facilitates the implementation of the XtremeDSP Slice.
For more information, see the:

• data sheet for Virtex-4 devices and Virtex-5 devices

• XtremeDSP for Virtex-4 FPGAs User Guide

• Virtex-5 XtremeDSP User Guide

CORE Generator Software
The CORE Generator™ software delivers parameterized Intellectual Property (IP)
optimized for Xilinx® FPGA devices. It provides a catalog of ready-made functions
ranging in complexity from FIFOs and memories to high level system functions. High
level system functions can include:

• Reed-Solomon Decoder and Encoder

• FIR filters

• FFTs for DSP applications

• Standard bus interfaces (for example, the PCI™ and PCI-X™ bus interfaces)

• Connectivity and networking interfaces (for example, the Ethernet, SPI-4.2, and PCI
EXPRESS® microprocessor interfaces)

For a typical core, the CORE Generator software produces the following files:

• EDN and NGC Files

• VHO Files

• VEO Files

• V and VHD Wrapper Files

• ASY Files

Synthesis and Simulation Design Guide
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Chapter 3: FPGA Design Flow

EDN and NGC Files
The Electronic Data Interchange Format (EDIF) Netlist (EDN) file and NGC files contain
the information required to implement the module in a Xilinx FPGA device. Since
NGC files are in binary format, ASCII NDF files may also be produced to communicate
resource and timing information for NGC files to third party synthesis tools. The NDF
file is read by the synthesis tool only and is not used for implementation.

VHO Files
VHDL template (VHO) template files contain code that can be used as a model for
instantiating a CORE Generator software module in a VHDL design. VHO files come
with a VHDL (VHD) wrapper file.

VEO Files
Verilog template (VEO) files contain code that can be used as a model for instantiating a
CORE Generator software module in a Verilog design. VEO files come with a Verilog
(V) wrapper file.

V and VHD Wrapper Files
V (Verilog) and VHD (VHDL) wrapper files support functional simulation. These
files contain simulation model customization data that is passed to a parameterized
simulation model for the core. In the case of Verilog designs, the V wrapper file also
provides the port information required to integrate the core into a Verilog design for
synthesis.

Some cores may generate actual source code or an additional top level Hardware
Description Language (HDL) wrapper with clocking resource and Input Output Block
(IOB) instances to enable you to tailor your clocking scheme to your own requirements.
For more information, see the core-specific documentation.

The V (Verilog) and VHD (VHDL) wrapper files mainly support simulation and are
not synthesizable.

ASCII Symbol (ASY) Files
ASCII Symbol (ASY) symbol information files allow you to integrate the CORE
Generator software modules into a schematic design for ModelSim or ISE® Design
Suite tools.

Functional Simulation Early in the Design Flow
Use functional or Register Transfer Level (RTL) simulation to verify syntax and
functionality.

When you simulate your design, Xilinx® recommends that you:
• Perform Separate Simulations

With larger hierarchical Hardware Description Language (HDL) designs, perform
separate simulations on each module before testing your entire design. This makes
it easier to debug your code.

• Create a Test Bench
Once each module functions as expected, create a test bench to verify that your
entire design functions as planned. Use the same test bench again for the final timing
simulation to confirm that your design functions as expected under worst-case
delay conditions.

Synthesis and Simulation Design Guide
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You can use ModelSim simulators with ISE® Design Suite. The appropriate processes
appear in ISE Design Suite when you choose ModelSim as your design simulator,
provided you have installed any of the following:
ModelSim SE, ModelSim PE, or ModelSim DE

You can also use these simulators with third-party synthesis tools in ISE Design Suite.

Synthesizing and Optimizing
To improve results and decrease run time, follow these recommendations:
• Creating a Compile Run Script
• Modifying Your Code to Successfully Synthesize Your Design
• Reading Cores

For more information, see your synthesis tool documentation.

Creating a Compile Run Script
TCL scripting can make compiling your design easier and faster. With advanced
scripting, you can:
• Run a compile multiple times using different options
• Write to different directories
• Run other command line tools

Running the TCL Script (Precision RTL Synthesis)
To run the TCL script from Precision RTL Synthesis:
1. Set up your project in Precision.
2. Synthesize your project.
3. Run the commands shown in Precision RTL Synthesis Commands to save and run

the TCL script.

Precision RTL Synthesis Commands
Function Command
Save the TCL script File > Save Command File

Run the TCL script File > Run Script

Run the TCL script from a command line c:\precision -shell -file project.tcl

Complete synthesis add_input_file top.vhdl

setup_design -manufacturer xilinx-family
virtex—6 -part XC6VLX75T

compile

synthesize

Running the TCL Script (Synplify)
To run the TCL script from Synplify:
Select File > Run TCL Script.

Synthesis and Simulation Design Guide
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OR

TypeSynplify -batch script_file.tcl at command prompt. Enter the
following TCL commands in Synplify.

Synplify Commands
Function Command
Start a new project project -new

Set device options set_option -technology virtex

set_option -part XCV50E

set_option -package CS144

set_option -speed_grade -8

Add file options add_file -constraint watch.sdc

add_file -vhdl -lib work macro1.vhd

add_file -vhdl -lib work macro2.vhd

add_file -vhdl -lib work top_levle.vhd

Set compilation and mapping options set_option -default_enum_encoding onehot

set_option -symbolic_fsm_compiler true

set_option -resource_sharing true

Set simulation options set_option -write_verilog false

set_option -write_vhdl false

Set automatic Place and Route (vendor)
options

set_option -write_apr_cnstrnt true

set_option -part XCV50E

set_option -package CS144

set_option -speed_grade -8

Set result format and file options project -result_format edif

project -result_file top_level.edf

project -run

project -save “watch.prj”

Exit exit

Running the TCL Script (XST)
For information on options used with the Xilinx Synthesis Technology (XST) see the XST
User Guide for Virtex-4, Virtex-5, Spartan-3, and Newer CPLD Devices (UG627) and the XST
User Guide for Virtex-6, Spartan-6, and 7 Series Devices (UG687).

Modifying Your Code to Successfull y Synthesiz e Your Design
You may need to modify your code to successfully synthesize your design. Certain
design constructs that are effective for simulationmay not be as effective for synthesis. The
synthesis syntax and code set may differ slightly from the simulator syntax and code set.
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Reading Cores
The synthesis tools discussed in this section support incorporating the information in
the CORE Generator™ software NDF files when performing design timing and area
analysis.

Including the IP core NDF files in a design when analyzing a design results in better
timing and resource optimizations for the surrounding logic. The NDF is used to
estimate the delay through the logic elements associated with the IP core. The synthesis
tools do not optimize the IP core itself, nor do they integrate the IP core netlist into the
synthesized design output netlist.

Reading Cores (XST)
Run Xilinx Synthesis Technology (XST) using the read_cores switch. When the switch
is set to on (the default), XST reads in Electronic Data Interchange Format (EDIF) and
NGC netlists. For more information, see:
• XST User Guide for Virtex-4, Virtex-5, Spartan-3, and Newer CPLD Devices (UG627)
• XST User Guide for Virtex-6, Spartan-6, and 7 Series Devices (UG687)
• ISE® Design Suite help

Reading Cores (Synplify Pro)
When reading cores in Synplify Pro, Electronic Data Interchange Format (EDIF) is
treated as another source format, but when reading in EDIF, you must specify the top
level VHDL or Verilog in your project.

Reading Cores (Precision RTL Synthesis)
Precision RTL Synthesis can add Electronic Data Interchange Format (EDIF) and
NGC files to your project as source files. For more information, see the Precision RTL
Synthesis help.

Setting Constraints
Setting constraints:
• Allows you to control timing optimization
• Uses synthesis tools and implementation processes more efficiently
• Helps minimize runtime and achieve your design requirements

The Precision RTL Synthesis and Synplify constraint editing tools allow you to apply
constraints to your Hardware Description Language (HDL) design.

For more information, see your synthesis tool documentation.

You can add the following constraints:
• Clock frequency or cycle and offset
• Input and Output timing
• Signal Preservation
• Module constraints
• Buffering ports
• Path timing
• Global timing
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Specifying Constraints in the User Constraints File (UCF)
Constraints defined for synthesis can also be passed to implementation in a Netlist
Constraints File (NCF) or the output Electronic Data Interchange Format (EDIF) file.
However, Xilinx® recommends that you do not pass these constraints to implementation.
Instead, specify your constraints separately in a User Constraints File (UCF). The UCF
gives you tight control over the overall specifications by giving you the ability to:
• Access more types of constraints
• Define precise timing paths
• Prioritize signal constraints

For recommendations on constraining synthesis and implementation, see Design
Considerations. For information on specific timing constraints, together with syntax
examples, see the Constraints Guide (UG625).

Setting Constraints in ISE Design Suite
You can set constraints in ISE® Design Suite with:
• Constraints Editor
• PACE (CPLD devices only)
• PlanAhead™ design analysis tool

For more information, see the ISE Help.

Evaluating Design Size and Performance
Your design must:
• Function at the specified speed
• Fit in the targeted device

After your design is compiled, use the reporting options of your synthesis tool to
determine preliminary device utilization and performance. After your design is mapped
by ISE® Design Suite, you can determine the actual device utilization.

At this point, you should verify that:
• Your chosen device is large enough to accommodate any future changes or additions
• Your design performs as specified

Estimating Device Utilization and Performance
Use the area and timing reporting options of your synthesis tool to estimate device
utilization and performance. After compiling, use the report area command to obtain
a report of device resource utilization. Some synthesis tools provide area reports
automatically. For correct command syntax, see your synthesis tool documentation.

These reports are usually accurate because the synthesis tool creates the logic from your
code and maps your design into the FPGA device. These reports are different for the
various synthesis tools. Some reports specify the minimum number of CLBs required,
while other reports specify the unpacked number of CLBs to make an allowance for
routing. For an accurate comparison, compare reports from the Xilinx® mapper tool
after implementation.

Any instantiated components, such as CORE Generator™ software modules, Electronic
Data Interchange Format (EDIF) files, or other components that your synthesis tool does
not recognize during compilation, are not included in the report file. If you include these
components, you must include the logic area used by these components when estimating
design size. Sections may be trimmed during mapping, resulting in a smaller design.

Synthesis and Simulation Design Guide
UG626 (v13.4) January 19, 2012 www.xilinx.com 21



Chapter 3: FPGA Design Flow

Use the timing report command of your synthesis tool to obtain a report with estimated
data path delays.

For more information, see your synthesis tool documentation.

The timing report is based on the logic level delays from the cell libraries and estimated
wire-load models. While this report estimates how close you are to your timing goals, it
is not the actual timing. An accurate timing report is available only after the design is
placed and routed.

Determining Actual Device Utilization and Pre-Routed Performance
To determine if your design fits the specified device, map it using the Xilinx® Map
program. The generated report file design_name.mrp contains the implemented
device utilization information. To read the report file, clickMap Report in the ISE®
Design Suite Design Summary. Run the Map program from ISE Design Suite or from
the command line.

Mapping Your Design Using ISE Design Suite
To map your design using ISE Design Suite:
1. Go to the Processes pane of the Design panel.
2. Click the plus (+) symbol in front of Implement Design.
3. Double-clickMap.
4. To view the Map Report, clickMap Report.

If the report does not exist, it is generated at this time. A green check mark in
front of the report name indicates that the report is up-to-date, and no processing
is performed.

5. If the report is not up-to-date:
a. Click the report name.
b. Select Process > Rerun to update the report.

The auto-make process automatically runs only the necessary processes to
update the report before displaying it.
Alternatively, you may select Process > Rerun All to re-run all processes (even
those processes that are up-to-date) from the top of the design to the stage
where the report would be.

6. View the Logic Level Timing Report with the Report Browser. This report shows
design performance based on logic levels and best-case routing delays.

7. Run the integrated Timing Analyzer to create a more specific report of design paths
(optional).

8. Use the Logic Level Timing Report and any reports generated with the Timing
Analyzer or the Map program to evaluate how close you are to your performance
and utilization goals.

Use these reports to decide whether to proceed to the Place and Route phase of
implementation, or to go back and modify your design or implementation options to
attain your performance goals. You should have some slack in routing delays to allow
the Place and Route tools to successfully complete your design. Use the verbose option
in the Timing Analyzer to see block-by-block delay. The timing report of a mapped
design (before Place and Route) shows block delays, as well as minimum routing delays.

A typical design for a Virtex®-4, Virtex-5 , or Virtex-7 devices should allow 40% of the
delay for logic, and 60% of the delay for routing. If most of your time is taken by logic,
the design will probably not meet timing after Place and Route.
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Mapping Your Design Using the Command Line
For available options, enter the trce command at the command line without any
arguments.

To map your design using the command line:

1. To translate your design, run:

ngdbuild -p target_device design_name.edf ( or ngc)

2. To map your design, run:

mapdesign_name.ngd

3. Use a text editor to view the Device Summary section of the Map Report
<design_name.mrp> .

The Device Summary section contains the device utilization information.

4. Run a timing analysis of the logic level delays from your mapped design as follows:

trce [options] design_name.ncd

Use the TRACE reports to:

• See how well the design meets performance goals

• Decide whether to proceed to Place and Route, or to modify your design or
implementation options

Leave some slack in routing delays to allow the Place and Route tools to successfully
complete your design.

Evaluating Coding Style and System Features
If you are not satisfied with design performance, re-evaluate your code. Modifying
your code and selecting different compiler options can dramatically improve device
utilization and speed.

Modifying Your Code to Improve Design Performance
To improve design performance:

1. Reduce levels of logic to improve timing by:

a. Using pipelining and re-timing techniques

b. Rewriting the Hardware Description Language (HDL) descriptions

c. Enabling or disabling resource sharing

2. Restructure logic to redefine hierarchical boundaries to help the compiler optimize
design logic

3. Perform logic replication to reduce critical nets fanout to improve placement and
reduce congestion

4. Take advantage of device resource with the CORE Generator™ software modules
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Improving Resour ce Utilization Using FPGA System Features
After correcting any coding problems, use the following FPGA system features to
improve resource utilization and enhance the speed of critical paths:
• Use clock enables.
• Use one-hot encoding for large or complex state machines.
• Use I/O registers when applicable.
• Use dedicated shift registers.
• In Virtex®-4 devices and Virtex-5 devices, use the dedicated DSP blocks.

Each device family has a unique set of system features. For more information about the
system features available for your target device, see the device data sheet.

Using Xilinx Specific Features of Your Synthesis Tool
Using the Xilinx® specific features of your synthesis tool allows better control over:
• Logic generated
• Number of logic levels
• Architecture elements used
• Fanout

If design performance is more than a few percentage points away from design
requirements, advanced algorithms in the Place and Route (PAR) tool now make it more
efficient to use your synthesis tool to achieve design performance. Most synthesis tools
have special options for Xilinx specific features.

For more information, see your synthesis tool documentation.

Placing and Routing
The overall goal when placing and routing your design is fast implementation and
high-quality results. You may not always accomplish this goal:
• Early in the design cycle, run time is usually more important than quality of results.

Later in the design cycle, the reverse is usually true.
• If the targeted device is highly utilized, the routing may become congested, and

your design may be difficult to route. In this case, the placer and router may take
longer to meet your timing requirements.

• If design constraints are rigorous, it may take longer to correctly place and route
your design, and meet the specified timing.

For more information, see the Command Line Tools User Guide (UG628).

Timing Simulation
Timing simulation is important in verifying circuit operation after the worst-case placed
and routed delays are calculated. In many cases, you can use the same test bench that
you used for functional simulation to perform a more accurate simulation with less
effort. Compare the results from the two simulations to verify that your design is
performing as initially specified. The Xilinx® tools create a VHDL or Verilog simulation
netlist of your placed and routed design, and provide libraries that work with many
common Hardware Description Language (HDL) simulators. For more information, see
Simulating Your Design.
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Timing-driven PAR is based on TRACE, the Xilinx timing analysis tool. TRACE is an
integrated static timing analysis, and does not depend on input stimulus to the circuit.
Placement and routing are executed according to the timing constraints that you
specified at the beginning of the design process. TRACE interacts with PAR to make
sure that the timing constraints you imposed are met.

If there are timing constraints, TRACE generates a report based on those constraints.
If there are no timing constraints, TRACE can optionally generate a timing report
containing:

• An analysis that enumerates all clocks and the required OFFSETs for each clock

• An analysis of paths having only combinatorial logic, ordered by delay

For more information on TRACE, see the Command Line Tools User Guide (UG628). For
more information on Timing Analysis, see the ISE® Design Suite Timing Analyzer Help.
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Chapter 4

General Recommendations for
Coding Practices

This chapter contains general information relating to Hardware Description Language
(HDL) coding styles and design examples. Its purpose is to help you develop an efficient
coding style. For specific information relating to coding for FPGA devices, see Coding
for FPGA Flow.

Designing With Hardware Description Langua ge (HDL)
A Hardware Description Language (HDL) contains many complex constructs that may
be difficult to understand at first. The methods and examples included in HDL guides
do not always apply to the design of FPGA devices. If you currently use HDLs to design
ASIC devices, your established coding style may unnecessarily increase the number
of logic levels in FPGA designs.

HDL synthesis tools implement logic based on the coding style of your design. To learn
how to efficiently code with HDLs, you can:

• Attend training classes

• Read reference and methodology notes

• See synthesis guidelines and templates available from Xilinx® and synthesis tool
vendors

When coding your designs, remember that an HDL is usually a VHSIC Hardware
Description Language (VHDL). You should try to find a balance between the quality of
the end hardware results and the speed of simulation.

This Guide will not teach you every aspect of VHDL or Verilog, but it will help you
develop an efficient coding style.
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Naming, Labeling, and General Coding Styles
Xilinx® recommends that you observe the following naming, labeling, and general
coding styles:
• Common Coding Style
• Xilinx Naming Conventions
• Reserved Names
• Naming Guidelines for Signals and Instances
• Matching File Names to Entity and Module Names
• Naming Identifiers
• Instantiating Sub-Modules
• Recommended Length of Line
• Common File Headers
• Indenting and Spacing

Common Coding Style
Xilinx® recommends that your design team agree on a coding style at the beginning
of your project. An established coding style allows you to read and understand code
written by your team members. Inefficient coding styles can adversely impact synthesis
and simulation, resulting in slow circuits. Because portions of existing Hardware
Description Language (HDL) designs are often used in new designs, you should follow
coding standards that are understood by the majority of HDL designers. This Guide
describes recommended coding styles that you should establish before you begin your
designs.

Xilinx Naming Conventions
Use Xilinx® naming conventions for naming signals, variables, and instances that are
translated into nets, buses, and symbols.
• Avoid VHDL keywords (such as entity , architecture , signal , and

component ) even when coding in Verilog.
• Avoid Verilog keywords (such as module , reg , and wire ) even when coding in

VHDL. See Annex B of System Verilog Spec version 3.1a.
• A user-generated name should not contain a forward slash (/ ). The forward slash is

usually used to denote a hierarchy separator.
• Names must contain at least one non-numeric character.
• Names must not contain a dollar sign ($).
• Names must not use less-than (<) or greater-than signs (>). These signs are

sometimes used to denote a bus index.

Reserved Names
The following FPGA resource names are reserved. Do not use them to name nets or
components.
• Device architecture names (such as CLB, IOB , PAD, and Slice )
• Dedicated pin names (such as CLKand INIT )
• GNDand VCC

• UNISIM primitive names such as BUFG, DCM, and RAMB16

• Do not use pin names such as P1 or A4 for component names
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For language-specific naming restrictions, see the VHDL and Verilog reference manuals.
Xilinx® does not recommend using escape sequences for illegal characters. If you plan
to import schematics, or to use mixed language synthesis or verification, use the most
restrictive character set.

Naming Guidelines for Signals and Instances
Naming conventions help you achieve:

• Maximum line length

• Coherent and legible code

• Allowance for mixed VHDL and Verilog design

• Consistent HDL code

General Naming Rules for Signals and Instances
Xilinx® recommends that you observe the following general naming rules:

• Do not use reserved words for signal or instance names.

• Do not exceed 16 characters for the length of signal and instance names, whenever
possible.

• Create signal and instance names that reflect their connection or purpose.

• Do not use mixed case for any particular name or keyword. Use either all capitals,
or all lowercase.

VHDL and Verilog Capitalization
Xilinx recommends that you observe the following guidelines when naming signals and
instances in VHDL and Verilog.

lower case UPPER CASE Mixed Case
library names USER PORTS Comments

keywords INSTANCE NAMES —

module names UNISIM COMPONENT
NAMES

—

entity names PARAMETERS —

user component names GENERICS —

internal signals — —

Since Verilog is case sensitive, module and instance names can be made unique by
changing their capitalization. For compatibility with file names, mixed language
support, and other tools, Xilinx recommends that you rely on more than just
capitalization to make instances unique.
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Matching File Names to Entity and Module Names
When you name your Hardware Description Language (HDL) files:

• Make sure that the VHDL or Verilog source code file name matches the designated
name of the entity (VHDL) or module (Verilog) specified in your design file. This
is less confusing, and usually makes it easier to create a script file for compiling
your design.

• If your design contains more than one entity or module, put each in a separate file.
For VHDL designs, Xilinx® recommends grouping the entity and the associated
architecture into the same file.

• Use the same name as your top-level design file for your synthesis script file with
either a .do, .scr, .script , or other appropriate default script file extension
for your synthesis tool.

Naming Identifier s
To make design code easier to debug and reuse:

• Use concise but meaningful identifier names.

• Use meaningful names for wires, regs, signals, variables, types, and any identifier in
the code.

Example: CONTROL_reg

• Use underscores to make the identifiers easier to read.

Instantiating Sub-Modules
Xilinx® recommends the following when using instantiating sub-modules:

• Use named association. Named association prevents incorrect connections for the
ports of instantiated components.

• Never combine positional and named association in the same statement.

• Use one port mapping per line to:

– Improve readability

– Provide space for a comment

– Allow for easier modification

Incorrect and Correct VHDL and Verilog Coding Examples

VHDL Verilog
Incorrect CLK_1: BUFG

port map (
I=>CLOCK_IN,
CLOCK_OUT

);

BUFG CLK_1 (
.I(CLOCK_IN),
CLOCK_OUT

);

Correct CLK_1: BUFG
port map(
I=>CLOCK_IN,
O=>CLOCK_OUT

);

BUFG CLK_1 (
.I(CLOCK_IN),
.O(CLOCK_OUT)

);
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Instantiating Sub-Modules VHDL Coding Example
-- FDCPE: Single Data Rate D Flip-Flop with Asynchronous Clear, Set and
-- Clock Enable (posedge clk). All families.
-- Xilinx HDL Language Template

FDCPE_inst : FDCPE
generic map (
INIT => '0') -- Initial value of register ('0' or '1')
port map (
Q => Q, -- Data output
C => C, -- Clock input
CE => CE, -- Clock enable input
CLR => CLR, -- Asynchronous clear input
D => D, -- Data input
PRE => PRE -- Asynchronous set input
);

-- End of FDCPE_inst instantiation

Instantiating Sub-Modules Verilog Coding Example
// FDCPE: Single Data Rate D Flip-Flop with Asynchronous Clear, Set and
// Clock Enable (posedge clk). All families.
// Xilinx HDL Language Template

FDCPE #(
.INIT(1'b0) // Initial value of register (1'b0 or 1'b1)
) FDCPE_inst (
.Q(Q), // Data output
.C(C), // Clock input
.CE(CE), // Clock enable input
.CLR(CLR), // Asynchronous clear input
.D(D), // Data input
.PRE(PRE) // Asynchronous set input
);

// End of FDCPE_inst instantiation

Recommended Length of Line
Xilinx® recommends that a line of VHDL or Verilog code not exceed 80 characters.
Choose signal and instance names carefully in order to not exceed the 80 character limit.

If a line must exceed 80 characters, break it with the continuation character, and align
the subsequent lines with the preceding code.

Avoid excessive nests in the code, such as nested if and case statements. Excessive
nesting can make the line too long, as well as inhibit optimization. By limiting nested
statements, code is usually more readable and more portable, and can be more easily
formatted for printing.

Common File Headers
Xilinx® recommends that you use a common file header surrounded by comments at
the beginning of each file. A common file header:

• Allows better documentation

• Improves code revision tracking

• Enhances reuse

The header contents depend on personal and company standards.
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VHDL File Header Example
---------------------------------------------------------
-- Copyright (c) 1996-2010 Xilinx, Inc.
-- All Rights Reserved
-- ____ ____
-- / /\/ / Company: Xilinx
-- /___/ \ / Design Name: MY_CPU
-- \ \ \/ Filename: my_cpu.vhd
-- \ \ Version: 1.1.1
-- / / Date Last Modified: Fri Sep 24 2009
-- /___/ /\ Date Created: Tue Sep 21 2009
-- \ \ / \
-- \___\/\___\
--
--Device: XC3S1000-5FG676
--Software Used: ISE 11.1
--Libraries used: UNISIM
--Purpose: CPU design
--Reference:
-- CPU specification found at: http://www.mycpu.com/docs
--Revision History:
-- Rev 1.1.0 - First created, joe_engineer, Tue Sep 21 2009.
-- Rev 1.1.1 - Ran changed architecture name from CPU_FINAL
-- john_engineer, Fri Sep 24 2009.

Indenting and Spacing
Proper indentation in code offers these benefits:

• More readable and comprehensible code by showing grouped constructs at the
same indentation level

• Fewer coding mistakes

• Easier debugging
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Code Indentation VHDL Coding Example
entity AND_ORis
port (
AND_OUT: out std_logic;
OR_OUT: out std_logic;
I0 : in std_logic;
I1 : in std_logic;
CLK : in std_logic;
CE : in std_logic;
RST : in std_logic);

end AND_OR;
architecture BEHAVIORAL_ARCHITECTUREof AND_ORis
signal and_int : std_logic;
signal or_int : std_logic;

begin
AND_OUT<= and_int;
OR_OUT<= or_int;
process (CLK)
begin
if (CLK'event and CLK='1') then
if (RST='1') then
and_int <= '0';
or_int <= '0';
elsif (CE ='1') then
and_int <= I0 and I1;
or_int <= I0 or I1;
end if;

end if;
end process;

end AND_OR;

Code Indentation Verilog Coding Example
module AND_OR(AND_OUT, OR_OUT, I0, I1, CLK, CE, RST);
output reg AND_OUT, OR_OUT;
input I0, I1;
input CLK, CE, RST;
always @(posedge CLK)
if (RST) begin
AND_OUT<= 1'b0;
OR_OUT<= 1'b0;

end else (CE) begin
AND_OUT<= I0 and I1;
OR_OUT<= I0 or I1;

end
endmodule

Specifying Constants
Use constants in your design to substitute numbers with more meaningful names.
Constants make a design more readable and portable.
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Specifying constants can be a form of in-code documentation that allows for easier
understanding of code function.

• For VHDL, Xilinx® recommends not using variables for constants. Define constant
numeric values as constants, and use them by name.

• For Verilog, parameters can be used as constants in the code in a similar manner.
This coding convention allows you to easily determine if several occurrences of the
same literal value have the same meaning.

In the following coding examples, the OPCODEvalues are declared as constants or
parameters, and the names refer to their function. This method produces readable code
that is easier to understand and modify.

Using Constants and Parameter s VHDL Coding Example
constant ZERO : STD_LOGIC_VECTOR(1 downto 0):=00; constant A_B: STD_LOGIC_VECTOR(1 downto 0):=01;
constant A_B : STD_LOGIC_VECTOR(1 downto 0):=10;
constant ONE : STD_LOGIC_VECTOR(1 downto 0):=11;
process (OPCODE, A, B)
begin

if (OPCODE= A_B)then OP_OUT<= A and B;
elsif (OPCODE= A_B) then

OP_OUT<= A or B;
elsif (OPCODE= ONE) then

OP_OUT<= ‘1’;
else

OP_OUT<= ‘0’;
end if;

end process;

Using Constants and Parameter s Verilog Coding Example
//Using parameters for OPCODEfunctions
parameter ZERO = 2'b00;
parameter A_B = 2'b01;
parameter A_B = 2'b10;
parameter ONE = 2'b11;
always @ (*)

begin
if (OPCODE== ZERO)

OP_OUT= 1'b0;
else if (OPCODE== A_B)

OP_OUT=A&B;
else if (OPCODE== A_B)

OP_OUT= A|B;
else

OP_OUT= 1'b1;
end

Using Generics and Parameter s to Specify Dynamic Bus and
Arra y Widths

To specify a dynamic or paramatizable bus width for a VHDL or Verilog design module:

• Define a generic (VHDL) or parameter (Verilog).

• Use the generic (VHDL) or parameter (Verilog) to define the bus width of a port
or signal.

The generic (VHDL) or parameter (Verilog) can contain a default which can be
overridden by the instantiating module. This can make the code easier to reuse, as
well as making it more readable.
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VHDL Generic Coding Example
-- FIFO_WIDTH data width (number of bits)
-- FIFO_DEPTH by number of address bits
-- for the FIFO RAM i.e. 9 -> 2**9 -> 512 words
-- FIFO_RAM_TYPE: BLOCKRAMor DISTRIBUTED_RAM
-- Note: DISTRIBUTED_RAMsuggested for FIFO_DEPTH
-- of 5 or less
entity async_fifo is
generic (FIFO_WIDTH: integer := 16;)

FIFO_DEPTH: integer := 9; FIFO_RAM_TYPE: string := "BLOCKRAM"); port ( din : in std_logic_vector(FIFO_WIDTH-1 downto 0);
rd_clk : in std_logic;
rd_en : in std_logic;
ainit : in std_logic;
wr_clk : in std_logic;
wr_en : in std_logic;
dout : out std_logic_vector(FIFO_WIDTH-1 downto 0) := (others=> '0');
empty : out std_logic := '1';
full : out std_logic := '0';
almost_empty : out std_logic := '1';
almost_full : out std_logic := '0');

end async_fifo;
architecture BEHAVIORAL of async_fifo is
type ram_type is array ((2**FIFO_DEPTH)-1 downto 0) of std_logic_vector (FIFO_WIDTH-1 downto 0);

Verilog Parameter Coding Example
-- FIFO_WIDTH data width(number of bits)
-- FIFO_DEPTH by number of address bits
-- for the FIFO RAM i.e. 9 -> 2**9 -> 512 words
-- FIFO_RAM_TYPE: BLOCKRAMor DISTRIBUTED_RAM
-- Note: DISTRIBUTED_RAMsuggested for FIFO_DEPTH
-- of 5 or less
module async_fifo (din, rd_clk, rd_en, ainit, wr_clk,
wr_en, dout, empty, full, almost_empty, almost_full, wr_ack);
parameter FIFO_WIDTH = 16;
parameter FIFO_DEPTH = 9;

parameter FIFO_RAM_TYPE= "BLOCKRAM";
input [FIFO_WIDTH-1:0] din;
input rd_clk;
input rd_en;
input ainit;
input wr_clk;
input wr_en;
output reg [FIFO_WIDTH-1:0] dout;
output empty;
output full;
output almost_empty;
output almost_full;
output reg wr_ack;
reg [FIFO_WIDTH-1:0] fifo_ram [(2**FIFO_DEPTH)-1:0];

TRANSLATE_OFF and TRANSLATE_ON
The synthesis directives TRANSLATE_OFFand TRANSLATE_ONwere formerly used
when passing generics or parameters for synthesis tools, since most synthesis tools
were unable to read generics or parameters. These directives were also used for library
declarations such as library UNISIM, since synthesis tools did not understand that
library.

Since most synthesis tools can now read generics and parameters and understand the
UNISIM library, you no longer need to use these directives in synthesizable code.
TRANSLATE_OFFand TRANSLATE_ONcan also be used to embed simulation-only code
in synthesizable files. Xilinx® recommends that any simulation-only constructs reside
in simulation-only files or test benches.
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For more information about TRANSLATE_OFFand TRANSLATE_ON, see the Constraints
Guide (UG625).
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Coding for FPGA Device Flow
This chapter contains specific information relating to coding for FPGA devices. For
general information relating to Hardware Description Language (HDL), see General
Recommendations for Coding Practices.

VHDL and Verilog Limitations
VHDL and Verilog were not originally intended as inputs to synthesis. For this reason,
synthesis tools do not support many hardware description and simulation constructs. In
addition, synthesis tools may use different subsets of VHDL and Verilog. VHDL and
Verilog semantics are well defined for design simulation. The synthesis tools must
adhere to these semantics to ensure that designs simulate the same way before and after
synthesis. Observe the guidelines in the following sections to create code that is most
suitable for Xilinx® design flow.

Design Challeng es in Using an Async hronous First-In-Fir st-Out
(FIFO) Buff er

Designers often use an asynchronous First-In-First-Out (FIFO ) buffer (also known as an
async FIFO or multi-rate FIFO ) to transfer data from one clock domain to another. In
order to determine the status of the FIFO and safely transfer the data, the design must
monitor and react to status flags (empty and full signals).

Since these flags are based on two clock domains that do not have related phases or
periods, the timing and predictability of the flags can not always be readily determined.
For this reason, you must take special precautions when using an asynchronous FIFO .

Flag assertion and de-assertion for most asynchronous FIFO implementations is not
inherently cycle deterministic. A functional or timing simulation may show the status
flag changing on one clock cycle, while on the FPGA device itself, the status flag may
change in the previous or next clock cycle. This may occur when the timing and order of
events in the simulator differs from the timing and order of events in the FPGA device.

The end timing of the FPGA device is determined by process, voltage, and temperature
(PVT). It is therefore possible to have cycle differences on different chips, as well as
under different environmental conditions on the same chip. You must be sure to take
these differences into account when designing your circuits.

You may encounter problems if you expect data to be valid after or during a certain
number of clock cycles, and you do not monitor the empty and full flags directly. In most
FIFO implementations, even if there is memory space, reading from a FIFO that has its
empty flag asserted, or writing to a FIFO that has its full flag asserted, gives an invalid
read or write condition. This can lead to unexpected results, and can create a serious
debugging problem. Xilinx® strongly recommends that you always monitor the status
flags, regardless of whether the asynchronous FIFO implementation passes simulation.
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In most asynchronous FIFO implementations, empty and full flags default to a safe
condition when a read and a write is performed at or near the same time at status flag
boundaries. A full flag may assert even if the FIFO is not actually full. An empty flag
may assert even if the FIFO is not actually empty. This prevents either flag from not
asserting when the FIFO is empty or full. A false full or false empty flag may result
depending on (a) the timing of the two clock domains and (b) the occurrence of a
read and a write close together when the FIFO is nearly empty or full. This must be
accounted for in the design to ensure proper operation under all conditions.

Many designers either use the CORE Generator™ software, or instantiate the FIFO
primitive (FIFO18 for example), in order to realize their FIFO circuit. Other designers
implement their own FIFO logic in order to create a more portable, more customized,
and more efficient implementation.

Various synthesis and simulation directives can allow the asynchronous FIFO to behave
in a known manner when testing asynchronous conditions.

• In many cases, a timing violation can not be avoided when designing FIFO
flag logic. If a timing violation occurs during timing simulation, the simulator
produces an unknown (X) output to indicate the unknown state. For this reason,
if logic is being driven from a known asynchronous source, and the proper design
precautions were made to ensure proper operation regardless of the violation, Xilinx
recommends adding the ASYNC_REG=TRUEattribute to the associated flag register.
This indicates that the register can safely receive asynchronous input. Timing
violations on the register no longer result in an X, but instead maintain its previous
value. This can also prevent the software from replicating the register, or performing
other optimizations that can have a negative affect on the register operation. For
more information, see Disabling X Propagation for Synchronous Elements.

• A memory collision may take place when a read occurs at the same time as a write
to the same memory location. Memory collisions should generally be avoided,
since they can corrupt the read data. The memory collision can be safely ignored
only if the read data is disregarded in the logic or design. In those rare cases, you
can disable collision checking with the SIM_COLLISION_CHECKattribute on the
RAM model. For more information, see Disabling BlockRAM Collision Checks
for Simulation.

Advantages and Disadvantages of Hierar chical Designs
Hardware Description Language (HDL) designs can either be described (synthesized) as
a large flat module, or as many small modules. Each methodology has its advantages
and disadvantages. As higher density FPGA devices are created, the advantages of
hierarchical designs outweigh many of the disadvantages.

Some advantages of hierarchical designs are:
• Provide easier and faster verification and simulation
• Allow several engineers to work on one design at the same time
• Speed up design compilation
• Produce designs that are easier to understand
• Manage the design flow efficiently

Some disadvantages of hierarchical designs are:
• Design mapping into the FPGA device may not be optimal across hierarchical

boundaries. This can cause lesser device utilization and decreased design
performance. If special care is taken, the effect of this can be minimized.

• Design file revision control becomes more difficult.
• Designs become more verbose.
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You can overcome most of these disadvantages with careful design consideration when
you choose the design hierarchy.

Using Synthesis Tools with Hierar chical Designs
Effectively partitioning your designs can significantly reduce compile time and improve
synthesis results. To effectively partition your design:
• Restrict Shared Resources
• Compile Multiple Instances
• Restrict Related Combinatorial Logic
• Separate Speed Critical Paths
• Restrict Combinatorial Logic
• Restrict Module Size
• Register All Outputs
• Restrict One Clock to Each Module or to Entire Design

Restrict Shared Resour ces
Place resources that can be shared on the same hierarchy level. If these resources are not
on the same hierarchy level, the synthesis tool cannot determine if they should be shared.

Compile Multiple Instances
Compile multiple occurrences of the same instance together to reduce the gate count. To
increase design speed, do not compile a module in a critical path with other instances.

Restrict Related Combinatorial Logic
Keep related combinatorial logic in the same hierarchical level to allow the synthesis tool
to optimize an entire critical path in a single operation. Boolean optimization does not
operate across hierarchical boundaries. If a critical path is partitioned across boundaries,
logic optimization is restricted. Constraining modules is difficult if combinatorial logic
is not restricted to the same hierarchy level.

Separate Speed Critical Paths
To achieve satisfactory synthesis results, locate design modules with different functions
at different hierarchy levels. Design speed is the first priority of optimization algorithms.
To achieve a design that efficiently utilizes device area, remove timing constraints from
design modules.

Restrict Combinatorial Logic
To reduce the number of CLBs used, restrict combinatorial logic that drives a register
to the same hierarchical block.

Restrict Module Size
Restrict module size to 100 - 200 CLBs. This range varies based on:
• Your computer configuration
• Whether the design is worked on by a design team
• The target FPGA device routing resources
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Although smaller blocks give you more control, you may not always obtain the most
efficient design. During final compilation, you may want to compile fully from the
top down.

For more information, see your synthesis tool documentation.

Register All Outputs
Arrange your design hierarchy so that registers drive the module output in each
hierarchical block. Registering outputs makes your design easier to constrain, since
you only need to constrain the clock period and the ClockToSetup of the previous
module. If you have multiple combinatorial blocks at different hierarchy levels, you
must manually calculate the delay for each module. Registering the outputs of your
design hierarchy can eliminate any possible problems with logic optimization across
hierarchical boundaries.

Restrict One Clock to Each Module or to Entire Design
By restricting one clock to each module, you need only to describe the relationship
between the clock at the top hierarchy level and each module clock.

By restricting one clock to the entire design, you need only to describe the clock at
the top hierarchy level.

For more information on optimizing logic across hierarchical boundaries and compiling
hierarchical designs, see your synthesis tool documentation.

Choosing Data Type
Note This section applies to VHDL only.

This section discusses Choosing Data Type, and includes:
• Use Std_logic (IEEE 1164)
• Declaring Ports
• Arrays in Port Declarations
• Minimize Ports Declared as Buffers

Use Std_logic (IEEE 1164)
Use the std_logic (IEEE 1164) standards for hardware descriptions when coding your
design. These standards are recommended for the following reasons:
1. std_logic applies as a wide range of state values

std_logic has nine different values that represent most of the states found in
digital circuits.

2. std_logic allows indication of all possible logic states within the FPGA
a. std_logic not only allows specification of logic high (1) and logic low (0),

but also whether a pullup (H) or pulldown (L) is used, or whether an output is
in high impedance (Z).

b. std_logic allows the specification of unknown values (X) due to possible
contention, timing violations, or other occurrences, or whether an input or
signal is unconnected (U).

c. std_logic allows a more realistic representation of the FPGA logic for both
synthesis and simulation, frequently giving more accurate results.

3. std_logic easily performs board-level simulation
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For example, if you use an integer type for ports for one circuit and standard logic for
ports for another circuit, your design can be synthesized. However, you must perform
time-consuming type conversions for a board-level simulation.

The back-annotated netlist from Xilinx® implementation is in std_logic . If you do
not use std_logic type to drive your top-level entity in the test bench, you cannot
reuse your functional test bench for timing simulation. Some synthesis tools can create
a wrapper for type conversion between the two top-level entities. Xilinx does not
recommend this practice.

Declaring Por ts
Use the std_logic type for all entity port declarations. The std_logic type makes
it easier to integrate the synthesized netlist back into the design hierarchy without
requiring conversion functions for the ports. The following VHDL coding example
uses the std_logic for port declarations:

Entity alu is
port(

A : in STD_LOGIC_VECTOR(3downto 0);
B : in STD_LOGIC_VECTOR(3downto 0);
CLK : in STD_LOGIC;
C : out STD_LOGIC_VECTOR(3downto 0)
);

end alu;

If a top-level port is specified as a type other than std_logic , software generated
simulation models (such as timing simulation) may no longer bind to the test bench.
This is due to the following factors:

• Type information cannot be stored for a particular design port.

• Simulation of FPGA hardware requires the ability to specify the values of
std_logic such as high-Z (tristate), and X (unknown) in order to properly
display hardware behavior.

Xilinx® recommends that you:

• Do not declare arrays as ports. This information cannot be properly represented
or re-created.

• Use std_logic and STD_LOGIC_VECTORfor all top-level port declarations.

Arrays in Por t Declarations
Although VHDL allows you to declare a port as an array type, Xilinx® recommends that
you not do so, for the following reasons:

• Incompatibility with Verilog

• Inability to Store and Re-Create Original Array Declaration

• Mis-Correlation of Software Pin Names

Incompatibility with Verilog
There is no equivalent way to declare a port as an array type in Verilog. This
limits portability across languages. It also limits as the ability to use the code for
mixed-language projects.
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Inability to Store and Re-Create Original Arra y Declaration
When you declare a port as an array type in VHDL, the original array declaration
cannot be stored and re-created. The Electronic Data Interchange Format (EDIF) netlist
format, as well as the Xilinx database, are unable to store the original type declaration
for the array.

As a result, when NetGen or another Netlister attempts to re-create the design, there
is no information as to how the port was originally declared. The resulting netlist
generally has mis-matched port declarations and resulting signal names. This is true not
only for the top-level port declarations, but also for the lower-level port declarations
of a hierarchical design since KEEP_HIERARCHYcan be used to attempt to preserve
those net names.

Mis-Correlation of Software Pin Names
Array port declarations can cause a mis-correlation of the software pin names from the
original source code. Since the software must treat each I/O as a separate label, the
corresponding name for the broken-out port may not match your expectation. This
makes design constraint passing, design analysis, and design reporting more difficult
to understand.

Minimiz e Por ts Declared as Buff ers
Do not use buffers when a signal is used internally and as an output port. See the
following VHDL coding examples.

Signal C Used Internall y and As Output Por t VHDL Coding Example
In the following VHDL coding example, signal C is used internally and as an output port:

Entity alu is
port(

A : in STD_LOGIC_VECTOR(3downto 0);
B : in STD_LOGIC_VECTOR(3downto 0);
CLK : in STD_LOGIC;
C : buffer STD_LOGIC_VECTOR(3downto 0) );

end alu;
architecture BEHAVIORAL of alu is
begin

process begin
if (CLK'event and CLK='1') then

C <= UNSIGNED(A) + UNSIGNED(B) UNSIGNED(C);
end if;

end process;
end BEHAVIORAL;

Because signal C is used both internally and as an output port, every level of hierarchy
in your design that connects to port Cmust be declared as a buffer. Buffer types are not
commonly used in VHDL designs because they can cause errors during synthesis.
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Dummy Signal with Por t C Declares as Output VHDL Coding Example
To reduce buffer coding in hierarchical designs, insert a dummy signal and declare port
Cas an output, as shown in the following VHDL coding example:

Entity alu is
port(

A : in STD_LOGIC_VECTOR(3downto 0);
B : in STD_LOGIC_VECTOR(3downto 0);
CLK : in STD_LOGIC;
C : out STD_LOGIC_VECTOR(3downto 0)
);

end alu;
architecture BEHAVIORAL of alu is
-- dummy signal

signal C_INT : STD_LOGIC_VECTOR(3downto 0);
begin

C <= C_INT;
process begin

if (CLK'event and CLK='1') then
C_INT <= A and B and C_INT;

end if;
end process;

end BEHAVIORAL;

Using `timescale
Note This section applies to Verilog only.

All Verilog test bench and source files should contain a `timescale directive, or
reference an include file containing a `timescale directive. Place the `timescale
directive or reference near the beginning of the source file, and before any module or
other design unit definitions in the source file.

Xilinx® recommends that you use a `timescale with a resolution of 1ps . Some Xilinx
primitive components such as DCMrequire a 1ps resolution in order to work properly in
either functional or timing simulation. There is little or no simulation speed difference
for a 1ps resolution as compared to a coarser resolution.

The following directive is a typical default:

`timescale 1ns/1ps

Mixed Langua ge Designs
Most FPGA synthesis tools allow you to create projects containing both VHDL and
Verilog files. Mixing VHDL and Verilog is restricted to design unit (cell) instantiation
only. A VHDL design can instantiate a Verilog module, and a Verilog design can
instantiate a VHDL entity.

Since VHDL and Verilog have different features, it is important to follow the rules for
creating mixed language projects, including:
• Case sensitivity
• Instantiating a VHDL design unit in a Verilog design
• Instantiating a Verilog module in a VHDL design
• Permitted data types
• Using generics and parameters

Synthesis tools may differ in mixed language support.
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For more information, see your synthesis tool documentation.

If Statements and Case Statements
Most synthesis tools can determine whether the if-elsif conditions are mutually
exclusive, and do not create extra logic to build the priority tree.

When writing if statements:
• Make sure that all outputs are defined in all branches of an if statement. If not, it

can create latches or long equations on the CEsignal. To prevent this, specify default
values for all outputs before the if statements.

• Remember that limiting the input signals into an if statement can reduce the
number of logic levels. If there are a large number of input signals, determine
whether some can be pre-decoded and registered before the if statement.

• Avoid bringing the dataflow into a complex if statement. Only control signals
should be generated in complex if-elsif statements.

Comparison of If Statements and Case Statements
If Statement Case Statement
Creates priority-encoded logic Creates balanced logic

Can contain a set of different expressions Evaluated against a common controlling
expression

Use for speed critical paths Use for complex decoding

4–to–1 Multiple xer Design With If Statement Coding Examples
The following coding examples use an if statement in a 4–to–1 multiplexer design.

4–to–1 Multiple xer Design With If Statement VHDL Coding Example
-- IF_EX.VHD
library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_unsigned.all;
entity if_ex is

port (
SEL: in STD_LOGIC_VECTOR(1downto 0);
A,B,C,D: in STD_LOGIC;
MUX_OUT: out STD_LOGIC);

end if_ex;
architecture BEHAV of if_ex is
begin

IF_PRO: process (SEL,A,B,C,D)
begin

if (SEL="00") then MUX_OUT<= A;
elsif (SEL="01") then

MUX_OUT<= B;
elsif (SEL="10") then

MUX_OUT<= C;
elsif (SEL="11") then

MUX_OUT<= D;
else

MUX_OUT<= '0';
end if;
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end process; --END IF_PRO
end BEHAV;

4–to–1 Multiple xer Design With If Statement Verilog Coding Example
/////////////////////////////////////////////////
// IF_EX.V //
// Example of a if statement showing a //
// mux created using priority encoded logic //
// HDL Synthesis Design Guide for FPGA devices //
/////////////////////////////////////////////////
module if_ex (
input A, B, C, D,
input [1:0] SEL,
output reg MUX_OUT);
always @ (*)

begin
if (SEL == 2'b00)

MUX_OUT= A;
else if (SEL == 2'b01)

MUX_OUT= B;
else if (SEL == 2'b10)

MUX_OUT= C;
else if (SEL == 2'b11)

MUX_OUT= D;
else

MUX_OUT= 0;
end

endmodule

4–to–1 Multiple xer Design With Case Statement Coding Examples
The following coding examples use a case statement for the same multiplexer.

In these examples, the case statement requires only one slice, while the if statement
requires two slices in some synthesis tools. In this instance, design the multiplexer using
the case statement. Fewer resources are used and the delay path is shorter. When
writing case statements, make sure all outputs are defined in all branches.

The Case_Ex Implementation diagram below shows the implementation of these
designs.
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4–to–1 Multiple xer Design With Case Statement VHDL Coding Example
-- CASE_EX.VHD
-- May 2009
library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_unsigned.all;
entity case_ex is

port (
SEL : in STD_LOGIC_VECTOR(1downto 0);
A,B,C,D: in STD_LOGIC;
MUX_OUT: out STD_LOGIC);

end case_ex;
architecture BEHAV of case_ex is
begin

CASE_PRO: process (SEL,A,B,C,D)
begin

case SEL is
when “00” => MUX_OUT<= A;
when “01” => MUX_OUT<= B;
when “10” => MUX_OUT<= C;
when “11” => MUX_OUT<= D;
when others => MUX_OUT<= '0';

end case;
end process; --End CASE_PRO

end BEHAV;

4–to–1 Multiple xer Design With Case Statement Verilog Coding Example
/////////////////////////////////////////////////
// CASE_EX.V //
// Example of a Case statement showing //
// A mux created using parallel logic //
// HDL Synthesis Design Guide for FPGA devices //
/////////////////////////////////////////////////
module case_ex (
input A, B, C, D,
input [1:0] SEL,
output reg MUX_OUT);

always @ (*)
begin

case (SEL)
2'b00: MUX_OUT= A;
2'b01: MUX_OUT= B;
2'b10: MUX_OUT= C;
2'b11: MUX_OUT= D;
default: MUX_OUT= 0;

endcase
end

endmodule
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Case_Ex Implementation Diagram

Sensitivity List in Process and Always Statements
A sensitivity list in a process statement (VHDL) or always block (Verilog) is a list of
signals to which the process statement (VHDL) or always block (Verilog) is sensitive.
When any of the listed signals changes its value, the process statement (VHDL) or always
block (Verilog) resumes and executes its statements. Depending on the sensitivity list
and set of statements, the process statement (VHDL) or always block (Verilog) can
describe sequential elements as flip-flops and latches or combinatorial elements, or a
mix of them.

When working with sensitivity lists, be sure to specify all necessary signals. If you do
not do so, hardware generated from the Hardware Description Language (HDL) code
may behave differently as compared to the Register Transfer Level (RTL) description.
This behavior arises from the synthesis tool for the following reasons:

• In some cases, it is impossible to model the RTL description using existing hardware.

• The HDL code requires additional logic in the final implementation in order to
exactly model the RTL description.

In order to avoid these two problems, synthesis may assume that the sensitivity list
contains other signals which were not explicitly listed in the HDL code. As a result,
while you will get the hardware you intended, the RTL and post-synthesis simulation
will differ. In this case, some synthesis tools may issue a message warning of an
incomplete sensitivity list. In that event, check the synthesis log file and, if necessary, fix
the RTL code.

The following example describes a simple AND function using a process and always
block. The sensitivity list is complete and a single LUT is generated.

VHDL Process Coding Example One
process (a,b)
begin

c <= a and b;
end process;
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Verilog Always Bloc k Coding Example One
always @(a or b)

c <= a & b;

The following examples are based on the previous two coding examples, but signal b is
omitted from the sensitivity list. In this case, the synthesis tool assumes the presence of
b in the sensitivity list and still generates the combinatorial logic (ANDfunction).

VHDL Process Coding Example Two
process (a)
begin

c <= a and b;
end process;

Verilog Always Bloc k Coding Example Two
always @(a)

c <= a & b;

Delays in Synthesis Code
Do not useWait for XX ns (VHDL) or the #XX (Verilog) statements in your code. XX
specifies the number of nanoseconds that must pass before a condition is executed. This
statement does not synthesize to a component. In designs that include this construct,
the functionality of the simulated design does not always match the functionality of the
synthesized design.

Wait for XX ns Statement VHDL Coding Example
wait for XX ns;

Wait for XX ns Statement Verilog Coding Example
#XX;

Do not use the After XX ns statement in your VHDL code or the Delay assignment in
your Verilog code.

After XX ns Statement VHDL Coding Example
(Q <=0 after XX ns)

Delay Assignment Verilog Coding Example
assign #XX Q=0;

XX specifies the number of nanoseconds that must pass before a condition is executed.
This statement is usually ignored by the synthesis tool. In this case, the functionality of
the simulated design does not match the functionality of the synthesized design.

Register s in FPGA Design
Xilinx® FPGA devices have abundant flip-flops. FPGA architectures support flip-flops
with the following control signals:
• Clock Enable
• Asynchronous Set/Reset
• Synchronous Set/Reset
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All synthesis tools targeting Xilinx FPGA devices are capable to infer registers with
all mentioned above control signals. For more information on control signal usage in
FPGA design, see Control Signals.

In addition, the value of a flip-flop at device start-up can be set to a logical value 0 or 1.
This is known as the initialization state, or INIT .

Flip-Flop with Positive Edge Clock VHDL Coding Example
process (C)
begin

if (C'event and C='1') then
Q <= D;

end if;
end process;

Flip-Flop with Positive Edge Clock Verilog Coding Example
always @(posedge C)
begin

Q <= D;
end

Flip-Flop with Positive Edge Clock and Clock Enable VHDL Coding
Example
process (C)
begin

if (C'event and C='1') then
if (CE='1') then

Q <= D;
end if;

end if;
end process;

Flip-Flop with Positive Edge Clock and Clock Enable Verilog Coding
Example
always @(posedge C)
begin

if (CE)
Q <= D;

end

Flip-Flop with Negative Edge Clock and Async hronous Reset VHDL
Coding Example
process (C, CLR)
begin

if (CLR = '1')then
Q <= '0';

elsif (C'event and C='0')then
Q <= D;

end if;
end process;
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Flip-Flop with Negative Edge Clock and Async hronous Reset Verilog
Coding Example
always @(negedge C or posedge CLR)
begin

if (CLR)
Q <= 1'b0;

else
Q <= D;

end

Flip-Flop with Positive Edge Clock and Synchronous Set VHDL Coding
Example
process (C)
begin

if (C'event and C='1') then
if (S='1') then

Q <= '1';
else

Q <= D;
end if;

end if;
end process;

Flip-Flop with Positive Edge Clock and Synchronous Set Verilog Coding
Example
always @(posedge C)
begin

if (S)
Q <= 1'b1;

else
Q <= D;

end

Input Output Bloc k (IOB) Register s
An Input Output Block (IOB) contains several storage elements that can be configured as
regular flip-flops or, depending on the FPGA family, as Dual-Data Rate (DDR) registers.

All flip-flops that are to be pushed into the IOB must have a fanout of 1. This applies
to output and tristate enable registers. For example, for a 32-bit bidirectional bus, the
tristate enable signal must be replicated in the original design so that it has a fanout of 1.

In order to push flip-flops to IOBs , you may use the following methods:
• Use a synthesis specific constraint
• Apply the IOB=TRUEconstraint in the User Constraints File (UCF)
• Use the –pr command line option in map

Synthesis tools may automatically push flip-flops to IOBs.

For more information, see your synthesis tool documentation.

Dual-Data Rate (DDR) Register s
In order to take advantage of Dual-Data Rate (DDR) registers, you must instantiate the
corresponding UNISIM primitives. However, some synthesis tools are able to infer DDR
registers directly from the Hardware Description Language (HDL) code.

For more information, see your synthesis tool documentation.
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Dual-Data Rate (DDR) Input Output Bloc k (IOB) Register s VHDL Coding
Example
library ieee;
use ieee.std_logic_1164.all;
entity ddr_input is
port ( clk : in std_logic;

d : in std_logic;
rst : in std_logic;
q1 : out std_logic;
q2 : out std_logic

);
end ddr_input;

architecture behavioral of ddr_input is
begin

q1reg : process (clk, rst)
begin

if rst = ’1’ then
q1 <= ’0’;

elsif clk’event and clk=’1’ then
q1 <= d;

end if;
end process;

q2reg : process (clk, rst)
begin

if rst = ’1’ then
q2 <= ’0’;

elsif clk’event and clk=’0’ then
q2 <= d;

end if;
end process;
end behavioral;
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Dual-Data Rate (DDR) Input Output Bloc k (IOB) Register s Verilog Coding
Example
module ddr_input (

input data_in, clk, rst,
output data_out);

reg q1, q2;

always @ (posedge clk, posedge rst)
begin

if (rst)
q1 <=1'b0;

else
q1 <= data_in;

end

always @ (negedge clk, posedge rst)
begin

if (rst)
q2 <=1'b0;

else
q2 <= data_in;

end
assign data_out = q1 & q2;

end module

Latc hes in FPGA Design
Synthesizers infer latches from incomplete conditional expressions, such as:
• An if statement without an else clause
• An intended register without a rising edge or falling edge construct

If Statement Without an else Clause VHDL Coding Example
process (G, D)
begin

if (G='1') then
Q <= D;

end if;
end process;

If Statement Without an else Clause Verilog Coding Example
always @(G or D)
begin

if (G)
Q = D;

end

Many times this is done by mistake. The design may still appear to function properly in
simulation. This can be problematic for FPGA designs, since timing for paths containing
latches can be difficult to analyze. Synthesis tools usually report in the log files when a
latch is inferred to alert you to this occurrence.

Xilinx® recommends that you avoid using latches in FPGA designs, due to the more
difficult timing analyses that take place when latches are used.

Some synthesis tools can determine the number of latches in your design.

For more information, see your synthesis tool documentation.
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You should convert all if statements without corresponding else statements and
without a clock edge to registers or logic gates. Use the recommended coding styles in
the synthesis tool documentation to complete this conversion.

Implementing Shift Register s
In general, a shift register is characterized by the following control and data signals:

• Clock

• Serial input

• Asynchronous set/reset

• Synchronous set/reset

• Synchronous/asynchronous parallel load

• Clock enable

• Serial or parallel output

The shift register output mode may be:

• Serial

Only the contents of the last flip-flop are accessed by the rest of the circuit

• Parallel

The contents of one or several flip-flops, other than the last one, are accessed as Shift
modes: for example, left, right.

Xilinx® FPGA devices contain dedicated SRL16 and SRL32 resources (integrated in
LUTs) allowing efficiently implement shift registers without using flip-flop resources.
However these elements support only LEFT shift operations, and have a limited number
of IO signals:

• Clock

• Clock Enable

• Serial Data In

• Serial Data Out

In addition, SRLs have address inputs (LUT A3, A2, A1, A0 inputs for SRL16)
determining the length of the shift register. The shift register may be of a fixed, static
length, or it may be dynamically adjusted. In dynamic mode each time a new address is
applied to the address pins, the new bit position value is available on the Q output after
the time delay to access the LUT.

As mentioned before, Synchronous and Asynchronous set/reset control signals are
not available in the SLRs primitives. However some synthesis tools are able to take
advantage of dedicated SRL resources and propose implementation allowing a
significant area savings.

For more information, see your synthesis tool documentation.
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Describing Shift Register s
There are several ways to describe shift registers in VHDL:

• Concatenation Operators

shreg <= shreg (6 downto 0) & SI;

• for loop constructs

for i in 0 to 6 loop
shreg(i+1) <= shreg(i);
end loop;
shreg(0) <= SI;

• Predefined shift operators

For example, SLL or SRL

8-Bit Shift-Left Register Serial In and Serial Out VHDL Coding Example
library ieee;
use ieee.std_logic_1164.all;

entity shift_regs_1 is
port(C, SI : in std_logic;

SO : out std_logic);
end shift_regs_1;

architecture archi of shift_regs_1 is
signal tmp: std_logic_vector(7 downto 0);

begin

process (C)
begin

if (C'event and C='1') then
tmp <= tmp(6 downto 0) & SI;

end if;
end process;

SO <= tmp(7);

end archi;

8-Bit Shift-Left Register Serial In and Serial Out Verilog Coding Example
module v_shift_regs_1 (C, SI, SO);

input C,SI;
output SO;
reg [7:0] tmp;

always @(posedge C)
begin

tmp = {tmp[6:0], SI};
end

assign SO = tmp[7];

endmodule
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16-Bit Dynamic Shift Register With Serial In and Serial Out VHDL Coding
Example
library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_unsigned.all;

entity dynamic_shift_regs_1 is
port(CLK : in std_logic;

DATA : in std_logic;
CE : in std_logic;
A : in std_logic_vector(3 downto 0);
Q : out std_logic);

end dynamic_shift_regs_1;

architecture rtl of dynamic_shift_regs_1 is
constant DEPTH_WIDTH: integer := 16;

type SRL_ARRAYis array (0 to DEPTH_WIDTH-1) of std_logic;
-- The type SRL_ARRAYcan be array
-- (0 to DEPTH_WIDTH-1) of
-- std_logic_vector(BUS_WIDTH downto 0)
-- or array (DEPTH_WIDTH-1 downto 0) of
-- std_logic_vector(BUS_WIDTH downto 0)
-- (the subtype is forward (see below))
signal SRL_SIG : SRL_ARRAY;

begin
PROC_SRL16: process (CLK)
begin

if (CLK'event and CLK = '1') then
if (CE = '1') then

SRL_SIG <= DATA & SRL_SIG(0 to DEPTH_WIDTH-2);
end if;

end if;
end process;

Q <= SRL_SIG(conv_integer(A));

end rtl;

16-Bit Dynamic Shift Register With Serial In and Serial Out Verilog Coding
Example
module v_dynamic_shift_regs_1 (Q,CE,CLK,D,A);

input CLK, D, CE;
input [3:0] A;
output Q;
reg [15:0] data;

assign Q = data[A];

always @(posedge CLK)
begin

if (CE == 1'b1)
data <= {data[14:0], D};

end

endmodule
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Contr ol Signals
This section discusses Control Signals, and includes:
• Set, Resets, and Synthesis Optimization
• Using Clock Enable Pin Instead of Gated Clocks
• Converting the Gated Clock to a Clock Enable

Set, Resets, and Synthesis Optimization
Xilinx® FPGA devices have abundant flip-flops. All architectures support an
asynchronous reset for those registers and latches. Even though this capability exists,
Xilinx does not recommend that you code for it. Using asynchronous resets may result in:
• More difficult timing analysis
• Less optimal optimization by the synthesis tool

The timing hazard which an asynchronous reset poses on a synchronous system is well
known. Less well known is the optimization trade-off which the asynchronous reset
poses on a design.

Global Set/Reset (GSR)
All Xilinx FPGA devices have a dedicated asynchronous reset called Global Set/Reset
(GSR). GSR is automatically asserted at the end of FPGA configuration, regardless of the
design. For gate-level simulation, this GSR signal is also inserted to mimic this operation
to allow accurate simulation of the initialized design as it happens in the silicon. Adding
another asynchronous reset to the actual code only duplicates this dedicated feature. It
is not necessary for device initialization or simulation initialization.

Shift Register LUT (SRL)
FPGA devices contain LUTs that may be configured to act as a 16-bit shift register called
a Shift Register LUT (SRL). Using any reset when inferring shift registers prohibits
the inference of the SRL.

The SRL is an efficient structure for building static and variable length shift registers.
A reset (either synchronous or asynchronous) would preclude using this component.
This generally leads to a less efficient structure using a combination of registers and,
sometimes, logic.

Synchronous and Async hronous Resets
The choice between synchronous and asynchronous resets can also change the choices of
how registers are used within larger IP blocks. For instance, DSP48 in Virtex®-4 devices
and Virtex-5 devices has several registers within the block which, if used, may result in a
substantial area savings, as well as improve overall circuit performance.

DSP48 has only a synchronous reset. If a synchronous reset is inferred in registers
around logic that could be packed into a DSP48, the registers can also be packed into
the component, resulting in a smaller and faster design. If an asynchronous reset is
used, the register must remain outside the block, resulting in a less optimal design.
Similar optimization applies to the block RAM registers and other components within
the FPGA device.

The flip-flops within the FPGA device are configurable to be either an asynchronous
set/reset, or a synchronous set/reset. If an asynchronous reset is described in the code,
the synthesis tool must configure the flip-flop to use the asynchronous set/reset. This
precludes the using any other signals using this resource.
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If a synchronous reset (or no reset at all) is described for the flip-flop, the synthesis tool
can configure the set/reset as a synchronous operation. Doing so allows the synthesis tool
to use this resource as a set/reset from the described code. It may also use this resource
to break up the data path. This may result in fewer resources and shorter data paths to
the register. Details of these optimizations depend on the code and synthesis tools used.

Async hronous Resets Coding Examples
This section gives asynchronous resets coding examples. For the same code re-written for
synchronous resets, see Synchronous Resets Coding Examples.

Async hronous Resets VHDL Coding Example
process (CLK, RST)
begin
if (RST = '1') then
Q <= '0';
elsif (CLK'event and CLK = '1') then
Q <= A or (B and C and D and E);
end if;

end process;

Async hronous Resets Verilog Coding Example
To implement the following code, the synthesis tool must infer two LUTs for the data
path, since five signals were used to create this logic

always @(posedge CLK or posedge RST)
if (RST)
Q <= 1'b0;
else
Q <= A | (B & C & D & E);

For a possible implementation of this code, see the following diagram.

Async hronous Resets Verilog Coding Example Diagram

Synchronous Resets Coding Examples
For the code shown under Asynchronous Resets Coding Examples re-written for
synchronous reset, see the following synchronous resets coding examples.
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Synchronous Resets VHDL Coding Example One
process (CLK)
begin
if (CLK'event and CLK = '1') then
if (RST = '1') then
Q <= '0';

else
Q <= A or (B and C and D and E);

end if;
end if;

end process;

Synchronous Resets Verilog Coding Example One
always @(posedge CLK)
if (RST)
Q <= 1'b0;
else
Q <= A | (B & C & D & E);

The synthesis tool now has more flexibility as to how this function can be represented.
For a possible implementation of this code, see the following diagram.

In this implementation, the synthesis tool can identify that any time A is active high, Q is
always a logic one. With the register now configured with the set/reset as a synchronous
operation, the set is now free to be used as part of the synchronous data path. This
reduces:

• The amount of logic necessary to implement the function

• The data path delays for the D and E signals

Logic could have also been shifted to the reset side as well if the code was written in a
way that was a more beneficial implementation

Synchronous Resets Verilog Coding Example One Diagram
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Synchronous Resets VHDL Coding Example Two
Now consider the following addition to the example shown in Synchronous Resets
VHDL Coding Example One.

process (CLK, RST)
begin
if (RST = '1') then
Q <= '0';
elsif (CLK'event and CLK = '1') then
Q <= (F or G or H) and (A or (B and C and D and E));
end if;

end process;

Synchronous Resets Verilog Coding Example Two
always @(posedge CLK or posedge RST)
if (RST)
Q <= 1'b0;
else
Q <= (F | G | H) & (A | (B & C & D & E));

Since eight signals now contribute to the logic function, a minimum of three LUTs are
needed to implement this function. For a possible implementation of this code, see
the following diagram.

Synchronous Resets Verilog Coding Example Two Diagram

Synchronous Resets VHDL Coding Example Three
If the same code is written with a synchronous reset:

process (CLK)
begin
if (CLK'event and CLK = '1') then
if (RST = '1') then
Q <= '0';

else
Q <= (F or G or H) and (A or (B and C and D and E));

end if;
end if;

end process;
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Synchronous Resets Verilog Coding Example Three
always @(posedge CLK)
if (RST)
Q <= 1'b0;
else
Q <= (F | G | H) & (A | (B & C & D & E));

For a possible implementation of this code, see the following diagram.

The resulting implementation not only uses fewer LUTs to implement the same logic
function, but may result in a faster design due to the reduction of logic levels for nearly
every signal that creates this function. While these are simple examples, they do show
how asynchronous resets force all synchronous data signals on the data input to the
register, resulting in a potentially less optimal implementation.

In general, the more signals that fan into a logic function, the more effective using
synchronous sets/resets (or no resets at all) can be in minimizing logic resources and in
maximizing design performance.

Synchronous Resets Verilog Coding Example Three Diagram

Using Clock Enable Pin Instead of Gated Clocks
Xilinx® recommends that you use the CLBclock enable pin instead of gated clocks.
Gated clocks can cause glitches, increased clock delay, clock skew, and other undesirable
effects. Using clock enable saves clock resources, and can improve timing
characteristic and analysis of the design.

If you want to use a gated clock for power reduction, most FPGA devices now have a
clock enabled global buffer resource called BUFGCE. However, a clock enable is still the
preferred method to reduce or stop the clock to portions of the design.
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Gated Clock VHDL Coding Example
-- The following code is for demonstration purposes only
-- Xilinx does not suggest using the following coding style in FPGAs
library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_unsigned.all;
entity gate_clock is

port (DATA, IN1, IN2, LOAD, CLOCK: in STD_LOGIC;
OUT1: out STD_LOGIC);

end gate_clock;
architecture BEHAVIORAL of gate_clock is
signal GATECLK: STD_LOGIC;
begin

GATECLK<= (IN1 and IN2 and LOAD and CLOCK);
GATE_PR: process (GATECLK)
begin

if (GATECLK'event and GATECLK='1') then
OUT1 <= DATA;

end if;
end process; -- End GATE_PR

end BEHAVIORAL;

Gated Clock Verilog Coding Example
// The following code is for demonstration purposes only
// Xilinx does not suggest using the following coding style in FPGAs
module gate_clock(
input DATA, IN1, IN2, LOAD, CLOCK,
output reg OUT1

);
wire GATECLK;
assign GATECLK= (IN1 & IN2 & LOAD & CLOCK);
always @(posedge GATECLK)
OUT1 <= DATA;

endmodule

Conver ting the Gated Clock to a Clock Enable
This section contains VHDL and Verilog coding examples for converting the gated
clock to a clock enable.
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Clock Enable VHDL Coding Example
library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_unsigned.all;
entity clock_enable is

port (DATA, IN1, IN2, LOAD, CLOCK: in STD_LOGIC;
OUT1: out STD_LOGIC);

end clock_enable;
architecture BEHAVIORAL of clock_enable is

signal ENABLE: std_logic;
begin

ENABLE <= IN1 and IN2 and LOAD;
EN_PR: process (CLOCK)
begin

if (CLOCK'event and CLOCK='1') then
if (ENABLE = '1') then

OUT1 <= DATA;
end if;

end if;
end process;

end BEHAVIORAL;

Clock Enable Verilog Coding Example
module clock_enable (
input DATA, IN1, IN2, LOAD, CLOCK,
output reg OUT1

);
wire ENABLE;

assign ENABLE = (IN1 & IN2 & LOAD);
always @(posedge CLOCK)
if (ENABLE)
OUT1 <= DATA;

endmoduleI

Implementation of Clock Enable Diagram

Initial State of the Register s and Latc hes
FPGA flip-flops are configured as either preset (asynchronous set) or clear (asynchronous
reset) during startup. This is known as the initialization state, or INIT . The initial state
of the register can be specified as follows:

• If the register is instantiated, it can be specified by setting the INIT generic/parameter
value to either a 1or 0, depending on the desired state. For more information, see
the Libraries Guides.

• If the register is inferred, the initial state can be specified by initializing the VHDL
signal declaration or the Verilog reg declaration as shown in the following coding
examples.

Synthesis and Simulation Design Guide
62 www.xilinx.com UG626 (v13.4) January 19, 2012



Chapter 5: Coding for FPGA Device Flow

Initial State of the Register s and Latc hes VHDL Coding Example One
signal register1 : std_logic := '0'; -- specifying register1 to start as a zero
signal register2 : std_logic := '1'; -- specifying register2 to start as a one
signal register3 : std_logic_vector(3 downto 0):="1011"; -- specifying INIT value for 4-bit register

Initial State of the Register s and Latc hes Verilog Coding Example One
reg register1 = 1'b0; // specifying regsiter1 to start as a zero
reg register2 = 1'b1; // specifying register2 to start as a one
reg [3:0] register3 = 4'b1011; //specifying INIT value for 4-bit register

Initial State of the Register s and Latc hes Verilog Coding Example Two
Another possibility in Verilog is to use an initial statement:

reg [3:0] register3;
initial begin

register3= 4'b1011;
end

Not all synthesis tools support this initialization. To determine whether it is supported,
see your synthesis tool documentation. If this initialization is not supported, or if it is
not specified in the code, the initial value is determined by the presence or absence of
an asynchronous preset in the code. If an asynchronous preset is present, the register
initializes to a one. If an asynchronous preset is not present, the register initializes
to a logic zero.

Initial State of the Shift Register s
The definition method of initial values for shift registers is the same used for Registers
and Latches. For more information, see Initial State of the Registers and Latches.

Initial State of the RAMs
The definition method of initial values for RAMs (block or distributed) is similar to
the one used for Registers and Latches. The initial state of the RAM can be specified
as follows:

• If the RAM is instantiated, it can be specified by setting the INIT_00 , INIT_01 , …
generic/parameter values, depending on the desired state. For more information,
see the Libraries Guides.

• If the RAM is inferred, the initial state can be specified by initializing the VHDL
signal declaration or using Verilog initial statement as shown in the following
coding examples. The initial values could be specified directly in the HDL code, or
in an external file containing the initialization data.

Initial State of the RAMs VHDL Coding Example
type ram_type is array (0 to 63) of std_logic_vector(19 downto 0);
signal RAM : ram_type :=(
X"0200A", X"00300", X"08101", X"04000", X"08601", X"0233A",
X"00300", X"08602", X"02310", X"0203B", X"08300", X"04002",
X"08201", X"00500", ... );
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Initial State of the RAMs Verilog Coding Example
reg [19:0] ram [63:0];
initial begin
ram[63] = 20'h0200A; ram[62] = 20'h00300; ram[61] = 20'h08101;
ram[60] = 20'h04000; ram[59] = 20'h08601; ram[58] = 20'h0233A;
...
ram[2] = 20'h02341; ram[1] = 20'h08201; ram[0] = 20'h0400D;

end

Not all synthesis tools support this initialization. To determine whether it is supported,
see your synthesis tool documentation.

Multiple xers
You can implement multiplexers on Xilinx® FPGA devices by using:

• Dedicated resources such as MUXF5, MUXF6 ...

• Using Carry chains

• LUTs only

The implementation choice is automatically taken by the synthesis tool and driven by
speed or area design requirements. However some synthesis tools allow you to control
the implementation style of multiplexers.

For more information, see your synthesis tool documentation.

There are different description styles for multiplexers (MUXs), such as If-Then-Else
or Case. When writing MUXs, pay special attention in order to avoid common traps.
For example, if you describe a MUX using a Case statement, and you do not specify all
values of the selector, the result may be latches instead of a multiplexer.

Verilog Case statements can be:

• full

• not full

A Case statement is full if all possible branches are specified.

Verilog Case statements can also be:

• parallel

• not parallel

A Case statement is parallel if it does not contain branches that can be executed
simultaneously.

Synthesis tools automatically determine the characteristics of the Case statements
and generate corresponding logic. In addition they provide a way of allowing guide
interpretation of Case statements by means of special directives.

For more information, see your synthesis tool documentation.
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4-to-1 1-Bit MUX Using Case Statement VHDL Coding Example
library ieee;
use ieee.std_logic_1164.all;

entity multiplexers_2 is
port (a, b, c, d : in std_logic;

s : in std_logic_vector (1 downto 0);
o : out std_logic);

end multiplexers_2;

architecture archi of multiplexers_2 is
begin

process (a, b, c, d, s)
begin

case s is
when "00" => o <= a;
when "01" => o <= b;
when "10" => o <= c;
when others => o <= d;

end case;
end process;

end archi;

4-to-1 1-Bit MUX Using Case Statement Verilog Coding Example
module v_mults_2 (a, b, c, d, s, o);

input a,b,c,d;
input [1:0] s;
output o;
reg o;

always @(a or b or c or d or s)
begin

case (s)
2'b00 : o = a;
2'b01 : o = b;
2'b10 : o = c;
default : o = d;

endcase
end

endmodule
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4-to-1 1-Bit MUX Using IF Statement VHDL Coding Example
library ieee;
use ieee.std_logic_1164.all;

entity multiplexers_1 is
port (a, b, c, d : in std_logic;

s : in std_logic_vector (1 downto 0);
o : out std_logic);

end multiplexers_1;

architecture archi of multiplexers_1 is
begin

process (a, b, c, d, s)
begin

if (s = "00") then o <= a;
elsif (s = "01") then o <= b;
elsif (s = "10") then o <= c;
else o <= d;
end if;

end process;
end archi;

4-to-1 1-Bit MUX Using IF Statement Verilog Coding Example
module v_mults_1 (a, b, c, d, s, o);

input a,b,c,d;
input [1:0] s;
output o;
reg o;

always @(a or b or c or d or s)
begin

if (s == 2'b00) o = a;
else if (s == 2'b01) o = b;
else if (s == 2'b10) o = c;
else o = d;

end
endmodule

Finite State Machine (FSM) Components
This section discusses Finite State Machine (FSM) Components, and includes:

• Finite State Machine (FSM) Description Style

• Finite State Machine (FSM) With One Process

• Finite State Machine (FSM) With Two or Three Processes

• Finite State Machine (FSM) Recognition and Optimization

• Other Finite State Machine (FSM) Features

Finite State Machine (FSM) Description Style
Most FPGA synthesis tools propose a large set of templates to describe a Finite State
Machine (FSM). There are many ways to describe FSM components. A traditional FSM
representation incorporates Mealy and Moore machines, as shown in the following
diagram.
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Mealy and Moore Machines Diagram

For a Hardware Description Language (HDL), process (VHDL) and always blocks (Verilog)
are the best ways to describe FSM components. Xilinx® uses process to refer to both
VHDL processes and Verilog always blocks.

You may have several processes (1, 2 or 3) in your description, consider and decompose
the different parts of the preceding model.

The following example shows the Moore Machine with an Asynchronous Reset (RESET):

• 4 states: s1, s2, s3, s4

• 5 transitions

• 1 input: "x1"

• 1 output: "outp"

This model is represented by the following Bubble Diagram.

Bubb le Diagram

Finite State Machine (FSM) With One Process
In the following coding examples, output signal outp is a register.
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Finite State Machine (FSM) With One Process VHDL Coding Example
---- State Machine with a single process.
--
library IEEE;
use IEEE.std_logic_1164.all;

entity fsm_1 is
port ( clk, reset, x1 : IN std_logic;

outp : OUT std_logic);
end entity;

architecture beh1 of fsm_1 is
type state_type is (s1,s2,s3,s4);
signal state: state_type ;

begin
process (clk,reset)
begin
if (reset ='1') then
state <=s1;
outp<='1';

elsif (clk='1' and clk'event) then
case state is
when s1 => if x1='1' then

state <= s2;
outp <= '1';

else
state <= s3;
outp <= '0';

end if;
when s2 => state <= s4; outp <= '0';
when s3 => state <= s4; outp <= '0';
when s4 => state <= s1; outp <= '1';

end case;
end if;

end process;
end beh1;
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Finite State Machine (FSM) With a Single Always Bloc k Verilog Coding
Example
//
// State Machine with a single always block.
//
module v_fsm_1 (clk, reset, x1, outp);
input clk, reset, x1;
output outp;
reg outp;
reg [1:0] state;

parameter s1 = 2'b00; parameter s2 = 2'b01;
parameter s3 = 2'b10; parameter s4 = 2'b11;

initial begin
state = 2'b00;

end

always@(posedge clk or posedge reset)
begin
if (reset)
begin
state <= s1; outp <= 1'b1;

end
else
begin
case (state)
s1: begin

if (x1==1'b1)
begin
state <= s2;
outp <= 1'b1;

end
else
begin
state <= s3;
outp <= 1'b0;

end
end

s2: begin
state <= s4; outp <= 1'b1;

end
s3: begin

state <= s4; outp <= 1'b0;
end

s4: begin
state <= s1; outp <= 1'b0;

end
endcase

end
end

endmodule

In VHDL, the type of a state register can be a different type, such as:

• integer

• bit_vector

• std_logic_vector
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Xilinx® recommends that you use an enumerated type containing all possible state
values and to declare your state register with that type. This method was used in the
previous VHDL Coding Example.

In Verilog, the type of state register can be an integer or a set of defined parameters.
Xilinx recommends using a set of defined for state register definition. This method was
used in the previous Verilog coding example.

Finite State Machine (FSM) With Two or Three Processes
A Finite State Machine (FSM) With One Process can be described with two processes
using the FSM decomposition shown in the following diagram.

Finite State Machine (FSM) Using Two Processes Diagram

A Finite State Machine (FSM) With One Process can be described with three processes
using the FSM decomposition shown in the following diagram.

Finite State Machine (FSM) Using Three Processes Diagram

Finite State Machine (FSM) Recognition and Optimization
FPGA synthesis tools can automatically recognize Finite State Machine (FSM)
components from HDL code and perform FSM dedicated optimization. Depending on
your synthesis tool, recognizing an FSM may be conditioned by specific requirements,
such as the presence of initialization on a state register.

For more information, see your synthesis tool documentation.

In general, in the default mode, a synthesis tries to search for the best encoding method
for an FSM in order to reach best speed or smallest area. Many encoding methods
such as One-Hot, Sequential or Gray methods are supported. In general, One-Hot
encoding allows you to create state machine implementations that are efficient for FPGA
architectures.

If are not satisfied with the automatic solution, you may force your synthesis tool to
use a specific encoding method. Another possibility is to directly specify binary codes
synthesis tool must apply for each state using specific synthesis constraints.
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Other Finite State Machine (FSM) Features
Some synthesis tools offer additional Finite State Machine (FSM) related features, such
as implementing Safe State machines, and implementing FSM components on BRAMs.

For more information, see your synthesis tool documentation.

Implementing Memor y
Xilinx® FPGA devices provide two types of RAM:

• Distributed RAM (SelectRAM)

• Block RAM (Block SelectRAM)

There are three ways to incorporate RAM into a design:

• Use the automatic inference capability of the synthesis tool

• Use the CORE Generator™ software

• Instantiate dedicated elements from a UNISIM or UniMacro Library

Each of these methods has its advantages and disadvantages as shown in the following
table.

Incorporating RAM into a Design
Method Advantages Disadvantages
Inference • Most generic way to

incorporate RAMs into
the design, allowing
easy/automatic design
migration from one FPGA
family to another

• FAST simulation

• Requires specific coding
styles

• Not all RAMs modes are
supported

• Gives you the least control
over implementation

CORE Generator software Gives more control over the
RAM creation

• May complicate design
migration from one FPGA
family to another

• Slower simulation
comparing to Inference

Instantiation Offers the most control over
the implementation

• Limit and complicates
design migration from
one FPGA family to
another

• Requires multiple
instantiations to properly
create the right RAM
configuration

Block and Distributed RAMs offer synchronous write capabilities. Read operation of
the Block RAM is synchronous, while the distributed RAM can be configured for either
asynchronous or synchronous reads.

In general, the selection of distributed RAM versus block RAM depends on the size of
the RAM. If the RAM is not very deep, it is generally advantageous to use the distributed
RAM. If you require a deeper RAM, it is generally more advantageous to use the block
memory.
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If a memory description can be implemented using Block and Distributed RAM
resources, the synthesis tool automatically chooses how to implement RAM. This
choice is driven by RAM size, speed, and area design requirements. If the automatic
implementation choice does not meet your requirements, synthesis tools offer dedicated
constraints allowing you to select the RAM type.

For more information, see your synthesis tool documentation.

Since all Xilinx RAMs have the ability to be initialized, the RAMs may also be configured
either as a ROM (Read Only Memory), or as a RAM with pre-defined contents.
Initialization of RAMs can be done directly from HDL code.

Some synthesis tools provide additional control over RAM inference and optimization
process, such as pipelining, automatic Block RAM packing, and automatic Block RAM
resource management.

For more information, see your synthesis tool documentation.

For additional information about Implementing Memory, see:
• Block RAM Inference
• Distributed RAM Inference

Bloc k RAM Inference
Xilinx® Block RAMs are True Dual-Port Block resources. Each port is totally independent
and can be configured with different depth and width. Read and write operations are
synchronous. Block RAM resources offer different read/write synchronization modes:
• Read-First
• Write-First
• No-Change

FPGA device families such as Virtex®-5 devices offer additional enhancements,
including:
• Cascadable Block RAMs
• Pipelined output registers
• Byte-Wide Write Enable

BRAM inference capabilities differ from one synthesis tool to another.

For more information, see your synthesis tool documentation.

The coding examples in this section show coding styles for the most frequently used
Block RAM configurations, which are supported by most synthesis tools.

Single-P or t RAM in Read-Fir st Mode Pin Descriptions
IO Pins Description
clk Positive-Edge Clock
we Synchronous Write Enable (Active High)
en Clock Enable

addr Read/Write Address

di Data Input

do Data Output
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Single-P or t RAM in Read-Fir st Mode VHDL Coding Example
library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;

entity rams_01 is
port (clk : in std_logic;

we : in std_logic;
en : in std_logic;
addr : in std_logic_vector(5 downto 0);
di : in std_logic_vector(15 downto 0);
do : out std_logic_vector(15 downto 0));

end rams_01;

architecture syn of rams_01 is
type ram_type is array (63 downto 0) of std_logic_vector (15 downto 0);
signal RAM: ram_type;

begin

process (clk)
begin

if clk'event and clk = '1' then
if en = '1' then

if we = '1' then
RAM(conv_integer(addr)) <= di;

end if;
do <= RAM(conv_integer(addr)) ;

end if;
end if;

end process;

end syn;

Single-P or t RAM in Read-Fir st Mode Verilog Coding Example
module v_rams_01 (clk, en, we, addr, di, do);

input clk;
input we;
input en;
input [5:0] addr;
input [15:0] di;
output [15:0] do;
reg [15:0] RAM [63:0];
reg [15:0] do;

always @(posedge clk)
begin

if (en)
begin

if (we)
RAM[addr]<=di;

do <= RAM[addr];
end

end
endmodule
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Single-P or t RAM in Write-Fir st Mode Pin Descriptions
IO Pins Description
clk Positive-Edge Clock
we Synchronous Write Enable (Active High)
en Clock Enable

addr Read/Write Address

di Data Input

do Data Output

Single-P or t RAM in Write-Fir st Mode VHDL Coding Example One
library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;

entity rams_02a is
port (clk : in std_logic;

we : in std_logic;
en : in std_logic;
addr : in std_logic_vector(5 downto 0);
di : in std_logic_vector(15 downto 0);
do : out std_logic_vector(15 downto 0));

end rams_02a;

architecture syn of rams_02a is
type ram_type is array (63 downto 0)

of std_logic_vector (15 downto 0);
signal RAM : ram_type;

begin

process (clk)
begin

if clk'event and clk = '1' then
if en = '1' then

if we = '1' then
RAM(conv_integer(addr)) <= di;
do <= di;

else
do <= RAM( conv_integer(addr));

end if;
end if;

end if;
end process;

end syn;
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Single-P or t RAM in Write-Fir st Mode Verilog Coding Example One
module v_rams_02a (clk, we, en, addr, di, do);

input clk;
input we;
input en;
input [5:0] addr;
input [15:0] di;
output [15:0] do;
reg [15:0] RAM [63:0];
reg [15:0] do;

always @(posedge clk)
begin

if (en)
begin

if (we)
begin

RAM[addr] <= di;
do <= di;

end
else

do <= RAM[addr];
end

end
endmodule

Single-P or t RAM in Write-Fir st Mode VHDL Coding Example Two
library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;

entity rams_02b is
port (clk : in std_logic;

we : in std_logic;
en : in std_logic;
addr : in std_logic_vector(5 downto 0);
di : in std_logic_vector(15 downto 0);
do : out std_logic_vector(15 downto 0));

end rams_02b;

architecture syn of rams_02b is
type ram_type is array (63 downto 0) of std_logic_vector (15 downto 0);
signal RAM : ram_type;
signal read_addr: std_logic_vector(5 downto 0);

begin
process (clk)

begin
if clk'event and clk = '1' then

if en = '1' then
if we = '1' then

ram(conv_integer(addr)) <= di;
end if;
read_addr <= addr;

end if;
end if;

end process;

do <= ram(conv_integer(read_addr));

end syn;
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Single-P or t RAM in Write-Fir st Mode Verilog Coding Example Two
module v_rams_02b (clk, we, en, addr, di, do);

input clk;
input we;
input en;
input [5:0] addr;
input [15:0] di;
output [15:0] do;
reg [15:0] RAM [63:0];
reg [5:0] read_addr;

always @(posedge clk)
begin

if (en)
begin

if (we)
RAM[addr] <= di;

read_addr <= addr;
end

end

assign do = RAM[read_addr];

endmodule

Single-P or t RAM In No-Chang e Mode Pin Descriptions
IO Pins Description
clk Positive-Edge Clock
we Synchronous Write Enable (Active High)
en Clock Enable

addr Read/Write Address

di Data Input

do Data Output

Single-P or t RAM In No-Chang e Mode VHDL Coding Example
library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;

entity rams_03 is
port (clk : in std_logic;

we : in std_logic;
en : in std_logic;
addr : in std_logic_vector(5 downto 0);
di : in std_logic_vector(15 downto 0);
do : out std_logic_vector(15 downto 0));

end rams_03;

architecture syn of rams_03 is
type ram_type is array (63 downto 0) of std_logic_vector (15 downto 0);
signal RAM : ram_type;

begin

process (clk)
begin

if clk'event and clk = '1' then
if en = '1' then
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if we = '1' then
RAM(conv_integer(addr)) <= di;

else
do <= RAM( conv_integer(addr));

end if;
end if;

end if;
end process;

end syn;

Single-P or t RAM In No-Chang e Mode Verilog Coding Example
module v_rams_03 (clk, we, en, addr, di, do);

input clk;
input we;
input en;
input [5:0] addr;
input [15:0] di;
output [15:0] do;
reg [15:0] RAM [63:0];
reg [15:0] do;

always @(posedge clk)
begin

if (en)
begin

if (we)
RAM[addr] <= di;

else
do <= RAM[addr];

end
end

endmodule

Dual-Por t RAM in Read-Fir st Mode With One Write Por t Pin
Descriptions

IO Pins Description
clka, clkb Positive-Edge Clock
ena Primary Global Enable (Active High)

enb Dual Global Enable (Active High)
wea Primary Synchronous Write

addra Write Address/Primary Read Address

addrb Dual Read Address

dia Primary Data Input

doa Primary Output Port

dob Dual Output Port
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Dual-Por t RAM in Read-Fir st Mode with One Write Por t VHDL Coding
Example

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;

entity rams_01_1 is
port (clka, clkb : in std_logic;

wea : in std_logic;
ena, enb : in std_logic;
addra, addrb : in std_logic_vector(5 downto 0);
dia : in std_logic_vector(15 downto 0);
doa, dob : out std_logic_vector(15 downto 0));

end rams_01_1;

architecture syn of rams_01_1 is
type ram_type is array (63 downto 0) of std_logic_vector (15 downto 0);
signal RAM: ram_type;

begin

process (clka)
begin

if clka'event and clka = '1' then
if ena = '1' then

if wea = '1' then
RAM(conv_integer(addra)) <= dia;

end if;
doa <= RAM(conv_integer(addra)) ;

end if;
end if;

end process;

process (clkb)
begin

if clkb'event and clkb = '1' then
if enb = '1' then

dob <= RAM(conv_integer(addrb)) ;
end if;

end if;
end process;

end syn;

Dual-Por t RAM in Read-Fir st Mode with One Write Por t Verilog Coding
Example

module v_rams_01_1 (clka, clkb, ena, enb, wea, addra, addrb, dia, doa, dob);

input clka, clkb;
input wea;
input ena, enb;
input [5:0] addra, addrb;
input [15:0] dia;
output [15:0] doa, dob;
reg [15:0] RAM [63:0];
reg [15:0] doa, dob;

always @(posedge clka)
begin

if (ena)
begin

if (wea)
RAM[addra]<=dia;

doa <= RAM[addra];
end

end

always @(posedge clkb)
begin

if (enb)
begin

dob <= RAM[addrb];
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end
end

endmodule

Dual-Por t Bloc k RAM in Read-Fir st Mode With Two Write Por ts
Some synthesis tools support dual-port block RAMs with two write ports for VHDL
and Verilog. The concept of dual-write ports implies not only distinct data ports, but
also the possibility of having distinct write clocks and write enables. Distinct write
clocks also mean distinct read clocks, since the dual-port block RAM offers two clocks,
one shared by the primary read and write port, the other shared by the secondary read
and write port. In VHDL, the description of this type of block RAM is based on the
usage of shared variables.

Because of the shared variable, the description of the different read/write
synchronizations may be different from coding examples recommended for single-write
RAMs. The order of appearance of the different lines of code is significant. In the next
VHDL example describing read-first synchronization the read statement must come
BEFORE the write statement.

Dual-Por t Bloc k RAM in Read-Fir st Mode With Two Write Por ts
Pin Descriptions

IO Pins Description
clka, clkb Positive-Edge Clock
ena Primary Global Enable (Active High)

enb Dual Global Enable (Active High)

wea, web Primary Synchronous Write Enable (Active
High)

addra Write Address/Primary Read Address

addrb Dual Read Address

dia Primary Data Input

dib Dual Data Input

doa Primary Output Port

dob Dual Output Port

Dual-Por t Bloc k RAM in Read-Fir st Mode With Two Write Por ts VHDL
Coding Example

library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_unsigned.all;

entity rams_16 is
port(clka : in std_logic;

clkb : in std_logic;
ena : in std_logic;
enb : in std_logic;
wea : in std_logic;
web : in std_logic;
addra : in std_logic_vector(5 downto 0);
addrb : in std_logic_vector(5 downto 0);
dia : in std_logic_vector(15 downto 0);
dib : in std_logic_vector(15 downto 0);
doa : out std_logic_vector(15 downto 0);
dob : out std_logic_vector(15 downto 0));

end rams_16;
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architecture syn of rams_16 is
type ram_type is array (63 downto 0) of std_logic_vector(15 downto 0);
shared variable RAM : ram_type;

begin

process (CLKA)
begin

if CLKA'event and CLKA = '1' then
if ENA = '1' then

DOA <= RAM(conv_integer(ADDRA));
if WEA= '1' then

RAM(conv_integer(ADDRA)) := DIA;
end if;

end if;
end if;

end process;

process (CLKB)
begin

if CLKB'event and CLKB = '1' then
if ENB = '1' then

DOB <= RAM(conv_integer(ADDRB));
if WEB= '1' then

RAM(conv_integer(ADDRB)) := DIB;
end if;

end if;
end if;
end process;

end syn;

Dual-Por t Bloc k RAM in Read-Fir st Mode With Two Write Por ts Verilog
Coding Example

module v_rams_16 (clka,clkb,ena,enb,wea,web,addra,addrb,dia,dib,doa,dob);

input clka,clkb,ena,enb,wea,web;
input [5:0] addra,addrb;
input [15:0] dia,dib;
output [15:0] doa,dob;
reg [15:0] ram [63:0];
reg [15:0] doa,dob;

always @(posedge clka) begin
if (ena)
begin

if (wea)
ram[addra] <= dia;

doa <= ram[addra];
end

end

always @(posedge clkb) begin
if (enb)
begin

if (web)
ram[addrb] <= dib;

dob <= ram[addrb];
end

end

endmodule

Distrib uted RAM Inference
The coding examples shown below provide coding styles for the most frequently used
Distributed RAM configurations, which are supported by most synthesis tools.
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Single-P or t Distrib uted RAM Pin Descriptions

IO Pins Description
clk Positive-Edge Clock
we Synchronous Write Enable (Active High)
a Read/Write Address

di Data Input

do Data Output

Single-P or t Distrib uted RAM VHDL Coding Example
library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;

entity rams_04 is
port (clk : in std_logic;

we : in std_logic;
a : in std_logic_vector(5 downto 0);
di : in std_logic_vector(15 downto 0);
do : out std_logic_vector(15 downto 0));

end rams_04;

architecture syn of rams_04 is
type ram_type is array (63 downto 0) of std_logic_vector (15 downto 0);
signal RAM : ram_type;

begin

process (clk)
begin

if (clk'event and clk = '1') then
if (we = '1') then

RAM(conv_integer(a)) <= di;
end if;

end if;
end process;

do <= RAM(conv_integer(a));

end syn;

Single-P or t Distrib uted RAM Verilog Coding Example
module v_rams_04 (clk, we, a, di, do);

input clk;
input we;
input [5:0] a;
input [15:0] di;
output [15:0] do;
reg [15:0] ram [63:0];

always @(posedge clk) begin
if (we)

ram[a] <= di;
end

assign do = ram[a];

endmodule
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Dual-Por t Distrib uted RAM Pin Descriptions

IO Pins Description
clk Positive-Edge Clock
we Synchronous Write Enable (Active High)
a Write Address/Primary Read Address

dpra Dual Read Address

di Data Input
spo Primary Output Port

dpo Dual Output Port

Dual-Por t Distrib uted RAM VHDL Coding Example
library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;

entity rams_09 is
port (clk : in std_logic;

we : in std_logic;
a : in std_logic_vector(5 downto 0);
dpra : in std_logic_vector(5 downto 0);
di : in std_logic_vector(15 downto 0);
spo : out std_logic_vector(15 downto 0);
dpo : out std_logic_vector(15 downto 0));

end rams_09;

architecture syn of rams_09 is
type ram_type is array (63 downto 0) of std_logic_vector (15 downto 0);
signal RAM : ram_type;

begin

process (clk)
begin

if (clk'event and clk = '1') then
if (we = '1') then

RAM(conv_integer(a)) <= di;
end if;

end if;
end process;

spo <= RAM(conv_integer(a));
dpo <= RAM(conv_integer(dpra));

end syn;

Dual-Por t Distrib uted RAM Verilog Coding Example
module v_rams_09 (clk, we, a, dpra, di, spo, dpo);

input clk;
input we;
input [5:0] a;
input [5:0] dpra;
input [15:0] di;
output [15:0] spo;
output [15:0] dpo;
reg [15:0] ram [63:0];

always @(posedge clk) begin
if (we)

ram[a] <= di;
end

assign spo = ram[a];
assign dpo = ram[dpra];
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endmodule

Arithmetic Suppor t
Xilinx® FPGA devices traditionally contain several hardware resources such as LUTs
and Carry Chains. These hardware resources efficiently implement various arithmetic
operations such as adders, subtractors, counters, accumulators, and comparators.

With the release of the Virtex®-4 device, Xilinx introduced a new primitive called
DSP48. This block was further enhanced in later families such as Virtex-5 devices and
Spartan®-3A DSP devices. DSP48 allows you to create numerous functions, including
multipliers, adders, counters, barrel shifters, comparators, accumulators, multiply
accumulate, complex multipliers, and others.

Currently, synthesis tools support the most important and frequently used DSP48
modes for DSP applications such as multipliers, adders/subtractors, multiply
adders/subtractors, and multiply accumulate. The synthesis tools also take advantage of
the internal registers available in DSP48, as well as the dynamic OPMODE port.

DSP48 fast connections allow you to efficiently build fast DSP48 chains as filters. These
fast connections are automatically supported by synthesis tools today.

The level of DSP48 support may differ from one synthesis tool to another.

For more information, see your synthesis tool documentation.

Since there are several ways to implement the same arithmetic operation on the target
device, synthesis tools make automatic choices depending on the operation type, size,
context usage, or timing requirements. In some situations, the automatic choice may
not meet your goals. Synthesis tools therefore offer several constraints to control
implementation process such as use_dsp48 in Xilinx Synthesis Technology (XST) or
syn_dspstyle in Synplicity.

For more information, see your synthesis tool documentation.

If you migrate a design previously implemented using an older and FPGA device family
to a newer one with a DSP48 block, and you want to take advantage of available DSP48
blocks, you must be aware of the following rules in order to get the best performance.

• DSP48 blocks give you the best performance when fully pipelined. You should add
additional pipelining stages in order to get the best performance.

• Internal DSP48 registers support synchronous set and reset signals. Asynchronous
set and reset signals are not supported. You must replace asynchronous initialization
signals by synchronous ones. Some synthesis tools may automatically make this
replacement. This operation renders the generated netlist NOT equivalent to the
initial RTL description.

For more information, see your synthesis tool documentation.

• For DSP applications, use chain structures instead of tree structures in your RTL
description in order to take full advantage of the DSP48 capabilities.

For more information on DSP48 blocks and specific DSP application coding style, see the
XtremeDSP™ User Guide for your target family.
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Unsigned 8-bit Adder VHDL Coding Example
library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;

entity arith_01 is
port(A,B : in std_logic_vector(7 downto 0);

SUM : out std_logic_vector(7 downto 0));
end arith_01;

architecture archi of arith_01 is
begin

SUM<= A + B;

end archi;

Unsigned 8-bit Adder Verilog Coding Example
module v_arith_01(A, B, SUM);

input [7:0] A;
input [7:0] B;
output [7:0] SUM;

assign SUM= A + B;

Endmodule

Signed 8-bit Adder VHDL Coding Example
library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_signed.all;

entity arith_02 is
port(A,B : in std_logic_vector(7 downto 0);

SUM : out std_logic_vector(7 downto 0));
end arith_02;

architecture archi of arith_02 is
begin

SUM<= A + B;

end archi;

Signed 8-bit Adder Verilog Coding Example
module v_arith_02 (A,B,SUM);

input signed [7:0] A;
input signed [7:0] B;
output signed [7:0] SUM;
wire signed [7:0] SUM;

assign SUM= A + B;

Endmodule
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Unsigned 8-bit Adder with Registered Input/Outputs VHDL Coding Example
library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;

entity arith_03 is
port(clk : in std_logic;

A,B : in std_logic_vector(7 downto 0);
SUM : out std_logic_vector(7 downto 0));

end arith_03;

architecture archi of arith_03 is
signal reg_a, reg_b: std_logic_vector(7 downto 0);

begin
process (clk)
begin

if (clk'event and clk='1') then
reg_a <= A;
reg_b <= B;
SUM<= reg_a + reg_b;

end if;
end process;

end archi;

Unsigned 8-bit Adder with Registered Input/Outputs Verilog Coding
Example
module v_arith_03 (clk, A, B, SUM);

input clk;
input [7:0] A;
input [7:0] B;
output [7:0] SUM;

reg [7:0] reg_a, reg_b, SUM;

always @(posedge clk)
begin

reg_a <= A;
reg_b <= B;
SUM <= reg_a + reg_b;

end

endmodule

Synthesis and Simulation Design Guide
UG626 (v13.4) January 19, 2012 www.xilinx.com 85



Chapter 5: Coding for FPGA Device Flow

Unsigned 8-bit Adder/Subtractor VHDL Coding Example
library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;

entity arith_04 is
port(A,B : in std_logic_vector(7 downto 0);

OPER: in std_logic;
RES : out std_logic_vector(7 downto 0));

end arith_04;

architecture archi of arith_04 is
begin

RES <= A + B when OPER='0'
else A - B;

end archi;

Unsigned 8-bit Adder/Subtractor Verilog Coding Example
module v_arith_04 (A, B, OPER, RES);

input OPER;
input [7:0] A;
input [7:0] B;
output [7:0] RES;
reg [7:0] RES;

always @(A or B or OPER)
begin

if (OPER==1'b0) RES = A + B;
else RES = A - B;

end

endmodule

Unsigned 8-Bit Greater or Equal Comparator VHDL Coding Example
library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;

entity arith_05 is
port(A,B : in std_logic_vector(7 downto 0);

CMP : out std_logic);
end arith_05;

architecture archi of arith_05 is
begin

CMP<= '1' when A >= B else '0';

end archi;
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Unsigned 8-Bit Greater or Equal Comparator Verilog Coding Example
module v_arith_05 (A, B, CMP);

input [7:0] A;
input [7:0] B;
output CMP;

assign CMP= (A >= B) ? 1'b1 : 1'b0;

endmodule

Unsigned 17x17-Bit Multiplier with Registered Input/Outputs VHDL Coding
Example
library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;

entity arith_06 is
port(clk : in std_logic;

A : in unsigned (16 downto 0);
B : in unsigned (16 downto 0);
MULT : out unsigned (33 downto 0));

end arith_06;

architecture beh of arith_06 is
signal reg_a, reg_b : unsigned (16 downto 0);

begin

process (clk)
begin

if (clk'event and clk='1') then
reg_a <= A; reg_b <= B;
MULT <= reg_a * reg_b;

end if;
end process;

end beh;

Unsigned 17x17-Bit Multiplier with Registered Input/Outputs Verilog
Coding Example
module v_arith_06(clk, A, B, MULT);

input clk;
input [16:0] A;
input [16:0] B;
output [33:0] MULT;

reg [33:0] MULT;
reg [16:0] reg_a, reg_b;

always @(posedge clk)
begin

reg_a <= A;
reg_b <= B;
MULT <= reg_a * reg_b;

end
endmodule
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Unsigned 8-Bit Up Counter with an Synchronous Reset VHDL Coding
Example
library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;

entity arith_07 is
port(clk, reset : in std_logic;

Res : out std_logic_vector(7 downto 0));
end arith_07;

architecture archi of arith_07 is
signal cnt: std_logic_vector(7 downto 0);

begin
process (clk)
begin

if (clk'event and clk='1') then
if (reset = '1') then

cnt <= "00000000";
else

cnt <= cnt + 1;
end if;

end if;
end process;

Res <= cnt;

end archi;

Unsigned 8-Bit Up Counter with an Synchronous Reset Verilog Coding
Example
module v_arith_07 (clk, reset, Res);

input clk, reset;
output [7:0] Res;

reg [7:0] cnt;

always @(posedge clk)
begin

if (reset)
cnt <= 8'b00000000;

else
cnt <= cnt + 1'b1;

end

assign Res = cnt;
endmodule
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Unsigned 8-Bit Up Accum ulator With Synchronous Reset VHDL Coding
Example
library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;

entity arith_08 is
port(clk, reset : in std_logic;

din : in std_logic_vector(7 downto 0);
Res : out std_logic_vector(7 downto 0));

end arith_08;

architecture archi of arith_08 is
signal accu: std_logic_vector(7 downto 0);

begin
process (clk)
begin

if (clk'event and clk='1') then
if (reset = '1') then

accu <= "00000000";
else

accu <= accu + din;
end if;

end if;
end process;

Res <= accu;

end archi;

Unsigned 8-Bit Up Accum ulator With Synchronous Reset Verilog Coding
Example
module v_arith_08 (clk, reset, din, Res);

input clk, reset;
input [7:0] din;
output [7:0] Res;

reg [7:0] accu;

always @(posedge clk)
begin

if (reset)
accu <= 8'b00000000;

else
accu <= accu + din;

end

assign Res = accu;
endmodule
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Multiplier Adder With 2 Register Levels on Multiplier Inputs, 1 Register
Level after Multiplier and 1 Register Level after Adder VHDL Coding
Example
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity arith_09 is
generic (p_width: integer:=8);
port (clk : in std_logic;

A, B : in std_logic_vector(7 downto 0);
C : in std_logic_vector(15 downto 0);
RES : out std_logic_vector(15 downto 0));

end arith_09;

architecture beh of arith_09 is
signal reg1_A, reg2_A,

reg1_B, reg2_B : std_logic_vector(7 downto 0);
signal reg_C, reg_mult : std_logic_vector(15 downto 0);

begin

process (clk)
begin

if (clk'event and clk='1') then
reg1_A <= A; reg2_A <= reg1_A;
reg1_B <= B; reg2_B <= reg1_B;
reg_C <= C;
reg_mult <= reg2_A * reg2_B;
RES <= reg_mult + reg_C;

end if;
end process;

end beh;

Multiplier Adder With 2 Register Levels on Multiplier Inputs, 1 Register
Level after Multiplier and 1 Register Level after Adder Verilog Coding
Example
module v_arith_09 (clk, A, B, C, RES);

input clk;
input [7:0] A;
input [7:0] B;
input [15:0] C;
output [15:0] RES;
reg [7:0] reg1_A, reg2_A, reg1_B, reg2_B;
reg [15:0] reg_C, reg_mult, RES;

always @(posedge clk)
begin

reg1_A <= A; reg2_A <= reg1_A;
reg1_B <= B; reg2_B <= reg1_B;
reg_C <= C;
reg_mult <= reg2_A * reg2_B;
RES <= reg_mult + reg_C;

end

endmodule
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Multiplier Up Accum ulator With 2 Register Levels on Multiplier Inputs,
1 Register Level after Multiplier and 1 Register Level after Accum ulator
VHDL Coding Example
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity arith_10 is
port (clk : in std_logic;

A, B : in std_logic_vector(7 downto 0);
RES : out std_logic_vector(15 downto 0));

end arith_10;

architecture beh of arith_10 is
signal reg1_A, reg2_A,

reg1_B, reg2_B : std_logic_vector(7 downto 0);
signal reg_mult, reg_accu : std_logic_vector(15 downto 0);

begin

process (clk)
begin

if (clk'event and clk='1') then
reg1_A <= A; reg2_A <= reg1_A;
reg1_B <= B; reg2_B <= reg1_B;
reg_mult <= reg2_A * reg2_B;
reg_accu <= reg_accu + reg_mult;

end if;
end process;

RES <= reg_accu;

end beh;

Multiplier Up Accum ulator With 2 Register Levels on Multiplier Inputs,
1 Register Level after Multiplier and 1 Register Level after Accum ulator
Verilog Coding Example
module v_arith_10 (clk, A, B, RES);

input clk;
input [7:0] A;
input [7:0] B;
output [15:0] RES;
reg [7:0] reg1_A, reg2_A, reg1_B, reg2_B;
reg [15:0] reg_mult, reg_accu;
wire [15:0] RES;

always @(posedge clk)
begin

reg1_A <= A; reg2_A <= reg1_A;
reg1_B <= B; reg2_B <= reg1_B;
reg_mult <= reg2_A * reg2_B;
reg_accu <= reg_accu + reg_mult;

end

assign RES = reg_accu;

endmodule
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Order and Group Arithmetic Functions
The ordering and grouping of arithmetic functions can influence design performance.
For example, the following two VHDL statements are not necessarily equivalent:

ADD <= A1 + A2 + A3 + A4;
ADD <= (A1 + A2) + (A3 + A4);

For Verilog, the following two statements are not necessarily equivalent:

ADD = A1 + A2 + A3 + A4;
ADD = (A1 + A2) + (A3 + A4);

The first statement cascades three adders in series. The second statement creates two
adders in parallel: A1 + A2 and A3 + A4. In the second statement, the two additions
are evaluated in parallel and the results are combined with a third adder. Register
Transfer Level (RTL) simulation results are the same for both statements. The second
statement results in a faster circuit after synthesis (depending on the bit width of the
input signals).

Although the second statement generally results in a faster circuit, in some cases, you
may want to use the first statement. For example, if the A4 signal reaches the adder later
than the other signals, the first statement produces a faster implementation because the
cascaded structure creates fewer logic levels for A4. This structure allows A4 to catch
up to the other signals. In this case, A1 is the fastest signal followed by A2 and A3.
A4 is the slowest signal.

Most synthesis tools can balance or restructure the arithmetic operator tree if timing
constraints require it. However, Xilinx® recommends that you code your design for
your selected structure.

Resour ce Sharing
Resource sharing uses a single functional block (such as an adder or comparator) to
implement several operators in the HDL code. Use resource sharing to improve design
performance by reducing the gate count and the routing congestion. If you do not use
resource sharing, each HDL operation is built with separate circuitry. You may want to
disable resource sharing for speed critical paths in your design.

The following operators can be shared either with instances of the same operator or
with an operator on the same line.
• *

• + -

• > >= < <=

For example, a + (plus) operator can be shared with instances of other + (plus) operators
or with – (minus) operators. An * (asterisk) operator can be shared only with other *
(asterisk) operators.

You can implement the following arithmetic functions with gates or with your synthesis
tool module library.
• +

• –

• magnitude comparators

The library functions use modules that take advantage of the carry logic in the FPGA
devices. Carry logic and its dedicated routing increase the speed of arithmetic functions
that are larger than 4 bits. To increase speed, use the module library if your design
contains arithmetic functions that are larger than 4 bits, or if your design contains only
one arithmetic function. Resource sharing of the module library automatically occurs in
most synthesis tools if the arithmetic functions are in the same process.
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Resource sharing adds additional logic levels to multiplex the inputs to implement
more than one function. You may not want to use it for arithmetic functions that are
part of a time critical path.

Since resource sharing allows you to reduce design resources, the device area required
for your design is also decreased. The area used for a shared resource depends on the
type and bit width of the shared operation. You should create a shared resource to
accommodate the largest bit width and to perform all operations.

If you use resource sharing in your designs, you may want to use multiplexers to
transfer values from different sources to a common resource input. In designs that have
shared operations with the same output target, multiplexers are reduced as shown in
the following coding examples.

The VHDL example is shown implemented with gates in the following diagram.

Implementation of Resour ce Sharing Diagram

Resour ce Sharing VHDL Coding Example
-- RES_SHARING.VHD
library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_unsigned.all;
use IEEE.std_logic_arith.all;
entity res_sharing is

port (
A1,B1,C1,D1 : in STD_LOGIC_VECTOR(7 downto 0);
COND_1 : in STD_LOGIC;
Z1 : out STD_LOGIC_VECTOR(7 downto 0));

end res_sharing;
architecture BEHAV of res_sharing is
begin

P1: process (A1,B1,C1,D1,COND_1)
begin

if (COND_1='1') then
Z1 <= A1 + B1;

else
Z1 <= C1 + D1;

end if;
end process; -- end P1

end BEHAV;
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Resour ce Sharing Verilog Coding Example
/* Resource Sharing Example
* RES_SHARING.V
*/
module res_sharing (
input [7:0] A1, B1, C1, D1,
input COND_1,
output reg [7:0] Z1);
always @(*)

begin
if (COND_1)

Z1 <= A1 + B1;
else

Z1 <= C1 + D1;
end

endmodule

If you disable resource sharing, or if you code the design with the adders in separate
processes, the design is implemented using two separate modules as shown in the
following diagram.

Implementation Without Resour ce Sharing Diagram

For more information, see your synthesis tool documentation.

Synthesis Tool Naming Conventions
During synthesis, the synthesis tool may preserve some net and logic names and alter
others. The resulting netlist may be hard to read and hard to relate to the original code.
Different synthesis tools generate names in different ways.

Knowing the naming rules that your synthesis tool uses for netlist generation helps you:
• Determine how nets and component names appearing in the final netlist relate to

the original input design
• Determine how nets and names during your post-synthesis design view of the

VHDL or Verilog source code relate to the original input design
• Find objects in the generated netlist and apply implementation constraints by means

of the User Constraints File (UCF)

For more information, see your synthesis tool documentation.

Instantiating FPGA Primitives
Xilinx® provides a set of libraries containing architecture specific and customized
components that can be explicitly instantiated as components in your design.
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Architecture specific components that are built into the implementation tool's library are
available for instantiation without the need to specify a definition. These components
are marked as primitive in the Libraries Guides. Components marked as macro in the
Libraries Guides are not built into the implementation tool's library and therefore cannot
be instantiated. The macro components in the Libraries Guides define the schematic
symbols. When macros are used, the schematic tool decomposes the macros into their
primitive elements when the schematic tool writes out the netlist. FPGA primitives can
be instantiated in VHDL and Verilog. All FPGA primitives are situated in the UNISIM
Library.

Declaring Component and Por t Map VHDL Coding Example
library IEEE;
use IEEE.std_logic_1164.all;
library unisim;
use unisim.vcomponents.all;
entity flops is port(

di : in std_logic;
ce : in std_logic;
clk : in std_logic;
qo : out std_logic;
rst : in std_logic);

end flops;

architecture inst of flops is
begin
U0 : FDCE port map(

D => di,
CE => ce,
C => clk,
CLR => rst,
Q => qo);

end inst;

Declaring Component and Por t Map Verilog Coding Example
module flops (
input d1, ce, clk, rst,
output q1);
FDCE u1 (

.D (d1),

.CE (ce),

.C (clk),

.CLR (rst),

.Q (q1));
endmodule

Some synthesis tools may require you to explicitly include a UNISIM library to the
project.

For more information, see your synthesis tool documentation.

Many Xilinx Primitives have a set of associated properties. These constraints can be
added to the primitive through:
• VHDL attribute passing
• Verilog attribute passing
• VHDL generic passing
• Verilog parameter passing
• User Constraints File (UCF)
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For more information on how to use these properties, see Attributes and Constraints.

Instantiating CORE Generator Software Modules
CORE Generator™ software generates:

• An Electronic Data Interchange Format (EDIF) or NGC netlist, or both, to describe
the functionality

• A component instantiation template for HDL instantiation

For information on instantiating a CORE Generator software module in ISE®, see the ISE
Help, especially,Working with CORE Generator IP. For more information on the CORE
Generator software, see the CORE Generator software Help.

Attrib utes and Constraints
Some designers use attribute and constraint interchangeably, while other designers give
them different meanings. Language constructs use attribute and directive in similar
yet different senses. Xilinx® documentation uses attributes and constraints as defined
in this section.

Attrib utes
An attribute is a property associated with a device architecture primitive component
that affects an instantiated component’s functionality or implementation. Attributes are
passed as follows:

• In VHDL, by means of generic maps

• In Verilog, by means of defparams or inline parameter passing

Examples of attributes are:

• The INIT property on a LUT4 component

• The CLKFX_DIVIDE property on a DCM

All attributes are described in the Libraries Guides as a part of the primitive component
description.

Synthesis Constraints
Synthesis constraints direct the synthesis tool optimization technique for a particular
design or piece of HDL code. They are either embedded within the VHDL or Verilog
code, or within a separate synthesis constraints file.

Examples of synthesis constraints are:

• USE_DSP48(XST)

• RAM_STYLE(XST)

For more information, see your synthesis tool documentation.

For more information about Xilinx Synthesis Technology (XST) constraints, see the XST
User Guide for Virtex-4, Virtex-5, Spartan-3, and Newer CPLD Devices (UG627) and the XST
User Guide for Virtex-6, Spartan-6, and 7 Series Devices (UG687).
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Implementation Constraints
Implementation constraints are instructions given to the FPGA implementation tools
to direct the mapping, placement, timing, or other guidelines for the implementation
tools to follow while processing an FPGA design. Implementation constraints are
generally placed in the User Constraints File (UCF), but may exist in the HDL code,
or in a synthesis constraints file.

Examples of implementation constraints are:

• LOC (placement)

• PERIOD (timing)

For more information, see the Constraints Guide (UG625).

Passing Attrib utes
Attributes are properties that are attached to Xilinx® primitive instantiations in order
to specify their behavior. They should be passed via the generic (VHDL) or parameter
(Verilog) mechanism to ensure that they are properly passed to both synthesis and
simulation.

VHDL Primitive Attrib ute Coding Example
The following VHDL coding example shows an example of setting the INIT primitive
attribute for an instantiated RAM16X1Swhich will specify the initial contents of this RAM
symbol to the hexadecimal value of A1B2.

small_ram_inst : RAM16X1S
generic map (
INIT => X"A1B2")
port map (
O => ram_out, -- RAMoutput
A0 => addr(0), -- RAMaddress[0] input
A1 => addr(1), -- RAMaddress[1] input
A2 => addr(2), -- RAMaddress[2] input
A3 => addr(3), -- RAMaddress[3] input
D => data_in, -- RAMdata input
WCLK=> clock, -- Write clock input
WE => we -- Write enable input
);

Verilog Primitive Attrib ute Coding Example
The following Verilog coding example shows an instantiated IBUFDS symbol in which
DIFF_TERMand IOSTANDARDare specified as FALSEand LVDS_25 respectively.

IBUFDS #(
.CAPACITANCE("DONT_CARE"), // "LOW", "NORMAL", "DONT_CARE" (Virtex-4/5 only)
.DIFF_TERM("FALSE"), // Differential Termination (Virtex-4/5, Spartan-3E/3A)
.IBUF_DELAY_VALUE("0"), // Specify the amount of added input delay for

// the buffer, "0"-"16" (Spartan-3E/3A only)
.IFD_DELAY_VALUE("AUTO"), // Specify the amount of added delay for input

// register, "AUTO", "0"-"8" (Spartan-3E/3A only)
.IOSTANDARD("DEFAULT") // Specify the input I/O standard
) IBUFDS_inst (
.O(O), // Buffer output
.I(I), // Diff_p buffer input (connect directly to top-level port)
.IB(IB) // Diff_n buffer input (connect directly to top-level port)
);
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Passing Synthesis Constraints
This section discusses Passing Synthesis Constraints, and includes:

• About Passing Synthesis Constraints

• Passing VHDL Synthesis Attributes

• Passing Verilog Synthesis Attributes

About Passing Synthesis Constraints
A constraint can be attached to HDL objects in your design, or specified from a separate
constraints file. You can pass constraints to HDL objects in two ways:

• Predefine data that describes an object

• Directly attach an attribute to an HDL object

Predefined attributes can be passed with a COMMAND file or constraints file in your
synthesis tool, or you can place attributes directly in your HDL code.

This section illustrates passing attributes in HDL code only. For information on passing
attributes via the command file, see your synthesis tool documentation.

Passing VHDL Synthesis Attrib utes
The following are examples of VHDL attributes:

• Attribute Declaration Example

• Attribute Use on a Port or Signal Example

• Attribute Use on an Instance Example

• Attribute Use on a Component Example

Attrib ute Declaration Example
attribute attribute_name : attribute_type;

Attrib ute Use on a Por t or Signal Example
attribute attribute_name of object_name : signal is attribute_value

See the following example:

library IEEE;
use IEEE.std_logic_1164.all;
entity d_reg is

port (
CLK, DATA: in STD_LOGIC;
Q: out STD_LOGIC);

attribute FAST : string;
attribute FAST of Q : signal is "true";

end d_reg;

Attrib ute Use on an Instance Example
attribute attribute_name of object_name : label is attribute_value
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See the following example:

architecture struct of spblkrams is
attribute LOC: string;
attribute LOC of SDRAM_CLK_IBUFG: label is "AA27";
Begin
-- IBUFG: Single-ended global clock input buffer
-- All FPGA
-- Xilinx HDL Language Template
SDRAM_CLK_IBUFG: IBUFG
generic map (
IOSTANDARD=> "DEFAULT")
port map (
O => SDRAM_CLK_o, -- Clock buffer output
I => SDRAM_CLK_i -- Clock buffer input
);
-- End of IBUFG_inst instantiation

Attrib ute Use on a Component Example
attribute attribute_name of object_name : component
is attribute_value

See the following example:

architecture xilinx of tenths_ex is
attribute black_box : boolean;
component tenths

port (
CLOCK : in STD_LOGIC;
CLK_EN : in STD_LOGIC;
Q_OUT : out STD_LOGIC_VECTOR(9downto 0)
);

end component;
attribute black_box of tenths : component is true;
begin

Passing Verilog Synthesis Attrib utes
Most vendors adopt identical syntax for passing attributes in VHDL, but not in Verilog.
Historically, attribute passing in Verilog was done by means of a method called
meta-comments. Each synthesis tool adopted its own syntax for meta-comments. For
meta-comment syntax, see your synthesis tool documentation.

Verilog 2001 provides a uniform syntax for passing attributes. Since the attribute is
declared immediately before the object is declared, the object name is not mentioned
during the attribute declaration.

(* attribute_name = "attribute_value" *)
Verilog_object;

See the following example:

(* RLOC = "R1C0.S0" *) FDCE #(
.INIT(1'b0) // Initial value of register (1'b0 or 1'b1)

) U2 (
.Q(q1), // Data output
.C(clk), // Clock input
.CE(ce), // Clock enable input
.CLR(rst), // Asynchronous clear input
.D(q0) // Data input

);
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Not all synthesis tools support this method of attribute passing.

For more information, see your synthesis tool documentation.

Pipelining
You can use pipelining to:

• Dramatically improve device performance at the cost of added latency (more clock
cycles to process the data)

• Increase performance by restructuring long data paths with several levels of logic,
and breaking it up over multiple clock cycles

• Achieve a faster clock cycle, and, as a result, an increased data throughput at the
expense of added data latency

Because Xilinx® FPGA devices are register-rich, the pipeline is created at no cost
in device resources. Since data is now on a multi-cycle path, you must account for
the added path latency in the rest of your design. Use care when defining timing
specifications for these paths.

Before Pipelining
In the following Before Pipelining diagram the clock speed is limited by:

• Clock-to out-time of the source flip-flop

• Logic delay through four levels of logic

• Routing associated with the four function generators

• Setup time of the destination register

Before Pipelining Diagram

After Pipelining
The After Pipelining diagram below is an example of the same data path shown in the
Before Pipelining Diagram after pipelining. Because the flip-flop is contained in the same
CLB as the function generator, the clock speed is limited by:

• The clock-to-out time of the source flip-flop

• The logic delay through one level of logic: one routing delay

• The setup time of the destination register

In this example, the system clock runs much faster after pipelining than before
pipelining.
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After Pipelining Diagram

Retiming
Some synthesis tools can automatically move registers across logic (forward or
backward) in order to increase design speed. This process:

• Is called Retiming or Register Balancing, depending on the synthesis tool

• Allows you to increase design speed without modifying your design

• May significantly increase the number of flip-flops

For more information, see your synthesis tool documentation.

Verilog Langua ge Suppor t
The ISim tool supports Verilog-2001. For details on Verilog-2001, see the IEEE Standard
Verilog Hardware Description Language manual, (IEEE Standard 1364–2001).

• Behavioral Statements

• Compiler Directives

• Declarations

• Expressions

• General

• Primitive and Module Instances

• Source Text

• Specify Functions

• System Tasks and Functions

• UDP Declarations and Instances
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Chapter 6

Simulating Your Design
This chapter describes the basic Hardware Description Language (HDL) simulation flow
using Xilinx® and third party tools. This chapter provides details on increasing design
size and complexity, as well as improvements in design synthesis and simulation tools,
have made Hardware Description Language (HDL) the preferred design languages
of most integrated circuit designers. The two leading HDL synthesis and simulation
languages are Verilog and VHDL. Both have been adopted as IEEE standards.

The ISE® Design Suite is designed to be used with several HDL synthesis and simulation
tools that provide a solution for programmable logic designs from beginning to end.
ISE Design Suite provides libraries, netlist readers, and netlist writers, along with
powerful Place and Route tools, that integrate with your HDL design environment
on Windows and Linux.

Adhering to Industr y Standar ds
Xilinx® adheres to relevant industry standards:

• Simulation Flows

• Standards Supported by Xilinx Simulation Flow

• Xilinx Supported Simulators and Operating Systems

• Xilinx Libraries

Simulation Flows
Observe the rules shown in the following table when compiling source files.

Compile Order Dependenc y
HDL Dependenc y Compile Order
Verilog Independent Any order

VHDL Dependent Bottom-up

Xilinx® recommends that you:

• Specify the test fixture file before the HDL netlist.

• Give the name testbench to the main module in the test fixture file.

This name is consistent with the name used by default in the ISE® Design Suite. If this
name is used, no changes are necessary to the option in ISE Design Suite in order to
perform simulation from that environment.
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Standar ds Suppor ted by Xilinx Simulation Flow
Description Version
VHDL IEEE-STD-1076-2000

VITAL Modeling Standard IEEE-STD-1076.4-2000

Verilog IEEE-STD-1364-2001

Standard Delay Format (SDF) OVI 3.0

Although the Xilinx Hardware Description Language (HDL) Netlister produces
IEEE-STD-1076-2000 VHDL code or IEEE-STD-1364-2001 Verilog code, that does
not restrict using newer or older standards for the creation of test benches or other
simulation files. If the simulator supports both older and newer standards, both
standards can generally be used in these simulation files. You must indicate to the
simulator during code compilation which standard was used to create the file.

Xilinx® does not support SystemVerilog. For more information, contact the Xilinx EDA
partners listed in the following sections for their SystemVerilog roadmaps:
• Simulating Xilinx Designs in ModelSim
• Simulating Xilinx Designs in IES
• Simulating Xilinx Designs in Synopsys VCS and VCS MX

Xilinx Suppor ted Simulator s and Operating Systems
Simulator RH

Lin ux
RH
Lin ux-64

SuSe
Lin ux

SuSe
Lin ux-64

Windo ws
XP

Windo ws
XP-64

Windo ws
Vista

Windo ws
Vista-64

ISim √ √ √ √ √ N/A √ N/A

ModelSim
SE, (6.6d)

√ √ √ √ √ √ √ √

ModelSim
PE,
(6.6d)

N/A N/A N/A √ √ √ √ √

ModelSim
DE,
(6.6d)

√ √ √ √ √ √ √ √

Mentor
Questa
Sim
(6.6d)

√ √ √ √ √ √ √ √

Cadence
Incisive
Enterprise
Simulator
(IES)
(10.2)

√ √ √ √ N/A N/A N/A N/A

Synopsys
VCS and
VCS MX
(2010.06)

√ √ √ √ N/A N/A N/A N/A

Aldec
Active-HDL
(8.3)

N/A N/A N/A N/A √ √ √ √

Aldec
Riviera-PRO
(8.3 or
later)

√ √ √ √ √ √ √ √
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Xilinx® does not support the UNIX operating system.

Xilinx recommends that you run the most current version of the simulator.

Since Xilinx develops its libraries and simulation netlists using IEEE standards, you
should be able to use most current VHDL and Verilog simulators. Check with your
simulator vendor to confirm that the standards are supported by your simulator, and
to verify the settings for your simulator.

Xilinx Libraries
The Xilinx® VHDL libraries are tied to the IEEE-STD-1076.4-2000 VITAL standard for
simulation acceleration. VITAL 2000 is in turn based on the IEEE-STD-1076-93 VHDL
language. Because of this, the Xilinx libraries must be compiled as 1076-93.

VITAL libraries include some additional processing for timing checks and
back-annotation styles. The UNISIM library turns these timing checks off for unit delay
functional simulation. The SIMPRIM back-annotation library keeps these checks on by
default to allow accurate timing simulations.

Simulation Points in Hardware Description Langua ge (HDL)
Design Flow

Xilinx® supports functional and timing simulation of Hardware Description Language
(HDL) designs as shown in the Five Simulation Points in HDL Design Flow section
below.

The following diagram shows the points of the design flow.

Primar y Simulation Points for Hardware Description Langua ge
(HDL) Designs Diagram

The Post-NGDBuild and Post-Map simulations can be used when debugging synthesis
or map optimization issues.
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Five Simulation Points in Hardware Description Langua ge (HDL)
Design Flow

UNISIM UniMacr o XilinxCoreLib
Models

SecureIP SIMPRIM Standar d
Delay
Format
(SDF)

1. Register
Transfer Level
(RTL)

√ √ √ √ N/A N/A

2. Post-Synthesis
(Pre-NGDBuild)
Gate-Level
Simulation
(optional)

√ N/A N/A √ N/A N/A

3. Post-NGDBuild
(Pre-Map)
Gate-Level
Simulation
(optional)

N/A N/A N/A √ √ N/A

4. Post-Map
Partial Timing
(Block Delays)
(optional)

N/A N/A N/A √ √ √

5. Timing
Simulation
Post-Place and
Route (Block and
Net Delays)

N/A N/A N/A √ √ √

For more information about SecureIP, see Encryption Methodology Used for SecureIP
Models.

Simulation Flow Libraries
The libraries required to support the simulation flows are described in detail in
VHDL and Verilog Libraries and Models. The flows and libraries support functional
equivalence of initialization behavior between functional and timing simulations.

Different simulation libraries support simulation before and after running NGDBuild:
• Before running NGDBuild, your design is expressed as a UNISIM netlist containing

Unified Library components that represent the logical view of the design.
• After running NGDBuild, your design is a netlist containing the SIMPRIM models

that represent the physical view of the design.

Although these library changes are fairly transparent, remember that:
• You must specify different simulation libraries for pre- and post-implementation

simulation.
• There are different gate-level cells in pre- and post-implementation netlists.

VHDL Standar d Delay Format (SDF) File
For VHDL, you must specify:
• The location of the Standard Delay Format (SDF) file
• Which instance to annotate during the timing simulation
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The method for doing this depends on the simulator being used. Typically, a command
line or program switch is used to read the Standard Delay Format (SDF). For more
information on annotating SDF files, see your simulation tool documentation.

Verilog Standar d Delay Format (SDF) File
For Verilog, within the simulation netlist the Verilog system task $sdf_annotate
specifies the name of the Standard Delay Format (SDF) file to be read.
• If the simulator supports $sdf_annotate , the SDF file is automatically read when

the simulator compiles the Verilog simulation netlist.
• If the simulator does not support $sdf_annotate , in order to apply timing values

to the gate-level netlist, you must manually instruct the simulator to annotate the
SDF file.

Register Transf er Level (RTL)
Register Transfer Level (RTL) may include:
• RTL Code
• Instantiated UNISIM library components
• Instantiated UniMacro components
• XilinxCoreLib and UNISIM gate-level models (CORE Generator™ software)
• SecureIP

The RTL-level (behavioral) simulation enables you to verify or simulate a description at
the system or chip level. This first pass simulation is typically performed to verify code
syntax, and to confirm that the code is functioning as intended. At this step, no timing
information is provided, and simulation should be performed in unit-delay mode to
avoid the possibility of a race condition.

RTL simulation is not architecture-specific unless the design contains instantiated
UNISIM or CORE Generator software components. To support these instantiations,
Xilinx® provides the UNISIM and XilinxCoreLib libraries. You can use CORE Generator
software components if:
• You do not want to rely on the module generation capabilities of the synthesis tool, or
• The design requires larger structures.

Keep the code behavioral for the initial design creation. Do not instantiate specific
components unless necessary. This allows for:
• More readable code
• Faster and simpler simulation
• Code portability (the ability to migrate to different device families)
• Code reuse (the ability to use the same code in future designs)

You may find it necessary to instantiate components if the component is not inferable.

Post-Synthesis (Pre-NGDBuild) Gate-Level Simulation
Post-Synthesis (Pre-NGDBuild) Gate-Level Simulation may include one of the following
(optional):
• Gate-level netlist containing UNISIM library components
• SecureIP

Most synthesis tools can write out a post-synthesis HDL netlist for a design. If the
VHDL or Verilog netlists are written for UNISIM library components, you may use the
netlists to simulate the design and evaluate the synthesis results.
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Xilinx® does not support this method if the netlists are written in terms of the vendor's
own simulation models.

Post-NGDBuild (Pre-Map) Gate-Level Simulation
Post-NGDBuild (Pre-Map) Gate-Level Simulation (optional) may include:

• Gate-level netlist containing SIMPRIM library components

• SecureIP

The post-NGDBuild (pre-map) gate-level functional simulation is used when it is not
possible to simulate the direct output of the synthesis tool. This occurs when the tool
cannot write UNISIM compatible VHDL or Verilog netlists. In this case, the NGD file
produced from NGDBuild is the input into the Xilinx® simulation Netlister, NetGen.
NetGen creates a structural simulation netlist based on SIMPRIM models.

Like post-synthesis simulation, post-NGDBuild simulation allows you to verify that your
design has been synthesized correctly, and you can begin to identify any differences due
to the lower level of abstraction. Unlike the post-synthesis pre-NGDBuild simulation,
there are Global Set/Reset (GSR) and Global Tristate (GTS) nets that must be initialized,
just as for post-Map and post-PAR simulation. For more information on using the
GSRand GTSsignals for post-NGDBuild simulation, see Global Reset and Tristate for
Simulation.

Post-Map Partial Timing (Bloc k Delays)
Post-Map Partial Timing (Block Delays) may include the following (optional):

• Gate-level netlist containing SIMPRIM library components

• Standard Delay Format (SDF) files

• SecureIP

You may also perform simulation after mapping the design. Post-Map simulation occurs
before placing and routing. This simulation includes the block delays for the design, but
not the routing delays. Since routing is not taking into consideration, the simulation
results may be inaccurate. Run this simulation as a debug step only if post-place and
route simulation shows failures.

As with the post-NGDBuild simulation, NetGen is used to create the structural
simulation. Running the simulation Netlister tool, NetGen creates a Standard Delay
Format (SDF) file. The delays for the design are stored in the SDF file which contains all
block or logic delays. It does not contain any of the routing delays for the design since
the design has not yet been placed and routed. As with all netlists created with NetGen,
Global Set/Reset (GSR) and Global Tristate (GTS) signals must be accounted for. For
more information on using the GSR and GTS signals for post-NGDBuild simulation, see
Global Reset and Tristate for Simulation.

Timing Simulation Post-Place and Route (Bloc k and Net Delays)
Timing Simulation Post-Place and Route Full Timing (Block and Net Delays) may
include:

• Gate-level netlist containing SIMPRIM library components

• Standard Delay Format (SDF) files

• SecureIP
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After your design has completed the Place and Route process in ISE® Design Suite,
a timing simulation netlist can be created. You now begin to see how your design
behaves in the actual circuit. The overall functionality of the design was defined in the
beginning, but timing information can not be accurately calculated until the design has
been placed and routed.

The previous simulations that used NetGen created a structural netlist based on
SIMPRIM models. This netlist comes from the placed and routed Native Circuit
Description (NCD) file. This netlist has Global Set/Reset (GSR) and Global Tristate (GTS)
nets that must be initialized. For more information on initializing the GSR and GTS nets,
see Global Reset and Tristate for Simulation.

When you run timing simulation, a Standard Delay Format (SDF) file is created as
with the post-Map simulation. This SDF file contains all block and routing delays for
the design.

Xilinx® highly recommends running this flow. For more information, see Importance of
Timing Simulation.

Using Test Benches to Provide Stimulus
Before you perform simulation, create a test bench or test fixture to apply the stimulus
to the design.

A test bench is Hardware Description Language (HDL) code written for the simulator
that:
• Instantiates the design netlists
• Initializes the design
• Applies stimuli to verify the functionality of the design

You can also set up the test bench to display the desired simulation output to a file,
waveform, or screen.

A test bench can be simple in structure and sequentially apply stimulus to specific
inputs. A test bench can also be complex, and may include:
• Subroutine calls
• Stimulus read in from external files
• Conditional stimulus
• Other more complex structures

The test bench has the following advantages over interactive simulation:
• It allows repeatable simulation throughout the design process.
• It provides documentation of the test conditions.

For more information, see Xilinx Application Note XAPP199, Writing Efficient Test Benches.

Creating a Test Bench
Use either of the following to create a test bench and simulate a design:
• ISE® Design Suite

ISE Design Suite creates a template test bench containing the proper structure,
library references, and design instantiation based on your design files. This greatly
eases test bench development at the beginning stages of the design.

• NetGen
Use the -tb switch in NetGen to create a test bench file.

Synthesis and Simulation Design Guide
UG626 (v13.4) January 19, 2012 www.xilinx.com 109

http://www.xilinx.com/cgi-bin/SW_Docs_Redirect/sw_docs_redirect?locale=en&topic=application+notes&sub=xapp199.pdf


Chapter 6: Simulating Your Design

Test Bench Files Created by NetGen
Langua ge File Name File Extension
VHDL test bench .tvhd

Verilog test fixture .tv

Test Bench Recommendations
When you create and run a test bench, Xilinx® recommends that you:

• Give the name testbench to the main module or entity name in the test bench file.
Always specify the `timescale in Verilog testbench files.

• Specify the instance name for the instantiated top-level of the design in the test
bench as UUT.

These names are consistent with the default names used by ISE® Design Suite for
calling the test bench and annotating the Standard Delay Format (SDF) file when
invoking the simulator.

• Initialize all inputs to the design within the test bench at simulation time zero in
order to properly begin simulation with known values.

• Apply stimulus data after 100 ns in order to account for the default Global Set/Reset
(GSR) pulse used in SIMPRIM-based simulation. The clock source should begin
before the Global Set/Reset (GSR) is released. For more information, see Global
Reset and Tristate for Simulation.

Running functional simulation test benches additional information:

• Running functional simulation means that the UNISIM libraries are used.

• This component library is used by the synthesis tools and when components
are instantiated in the HDL code. None of the elements in this library have any
timing information, except the clocked elements. They have one timing parameter,
clock–to-out, to prevent that race conditions pop up during simulation. This
clock-to-out parameter is for all elements fixed at 100 ps.

• It is advised that a generated test bench for functional simulation also uses a
clock-to-out parameter of 100 ps. Data generated by the test bench changes 100 ps
after the clock has changed. In VHDL this can be written as:

wait until (IntClock'event and IntClock = '1'); -- wait for a positive clock edge

DataIn <= IntDataFromFile after 100 ps; -- output data 100 ps after the clock edge

• It is not a must but when not taken in account the waveform views might show
unexpected spikes and glitches when combinatorial signals are displayed in the
waveform viewer.

• It is advisable for UNISIM simulations, functional simulations, to write the test
bench using the same specifications as the UNISIM library.

VHDL and Verilog Libraries and Models
VHDL and Verilog libraries and models include:

• Required Simulation Point Libraries

• Simulation Phase Library Information

• Library Source Files and Compile Order
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Required Simulation Point Libraries
The five simulation points require the following libraries:
• UNISIM
• UniMacro
• CORE Generator™ software (XilinxCoreLib)
• SecureIP
• SIMPRIM

First Simulation Point: Register Transf er Level (RTL)
The first point, Register Transfer Level (RTL), is a behavioral description of your design
at the register transfer level. RTL simulation is not architecture-specific unless your
design contains instantiated UNISIM, or CORE Generator software components.

To support these instantiations, Xilinx® provides the following libraries:
• UNISIM
• UniMacro
• CORE Generator technology behavioral XilinxCoreLib
• SecureIP

Second Simulation Point: Post-Synthesis (Pre-NGDBuild) Gate-Level
Simulation

The second simulation point is Post-Synthesis (Pre-NGDBuild) Gate-Level Simulation.

The synthesis tool must write out the HDL netlist using UNISIM primitives. Otherwise,
the synthesis vendor provides its own post-synthesis simulation library, which is not
supported by Xilinx. If there is IP in the design that is a blackbox for the synthesis tools,
NGCBuild must run before netgen . NGCBuild combines all the ngc and Electronic
Data Interchange Format (EDIF) files into a single ngc . NetGen can be then run on this
ngc file. For more information on running NGCBuild, see the NGCBuild chapter in the
Command Line Tools User Guide (UG628).

Xilinx provides the following libraries:
• UNISIM
• UniMacro
• SecureIP

Thir d Simulation Point: Post-NGDBuild (Pre-Map) Gate-Level Simulation
The third simulation point is Post-NGDBuild (Pre-Map) Gate-Level Simulation. This
simulation point requires the SIMPRIM and SecureIP Libraries.

Four th Simulation Point: Post-Map Partial Timing (Bloc k Delays)
The fourth simulation point is Post-Map Partial Timing (Block Delays). This simulation
point requires the SIMPRIM and SecureIP Libraries.

Fifth Simulation Point: Timing Simulation Post-Place and Route (Bloc k
and Net Delays)

The fifth simulation point is Timing Simulation Post-Place and Route (Block and Net
Delays). This simulation point requires the SIMPRIM and SecureIP Libraries.
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Simulation Phase Librar y Information
Librar y Required for Each of the Five Simulation Points

Simulation Point Compilation Order of Librar y Required
First Simulation Point
Register Transfer Level (RTL)

UNISIM

UniMacro

XilinxCoreLib

SecureIP

Second Simulation Point
Post-Synthesis (Pre-NGDBuild) Gate-Level
Simulation

UNISIM

UniMacro

SecureIP

Third Simulation Point
Post-NGDBuild (Pre-Map) Gate-Level
Simulation

SIMPRIM

Fourth Simulation Point
Post-Map Partial Timing (Block Delays)

SIMPRIM

SecureIP

Fifth Simulation Point
Timing Simulation Post-Place and Route
(Block and Net Delays)

SIMPRIM

SecureIP

Librar y Sour ce Files and Compile Order
Xilinx® recommends using Compxlib for compiling libraries.

Compilation order is required for all VITAL VHDL source files.

Simulation Librar y VITAL VHDL Location of Sour ce Files (Lin ux)
Libraries Location of Sour ce Files (Lin ux)
UNISIM $XILINX/vhdl/src/unisims

$XILINX/vhdl/src/unimacro

UNISIM 9500 $XILINX/vhdl/src/unisims

XilinxCoreLib FPGA
Families only

$XILINX/vhdl/src/XilinxCoreLib

SecureIP $XILINX/secureip/ <simulator> /

SIMPRIM (All Xilinx
Technologies)

$XILINX/vhdl/src/simprims
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Simulation Librar y VITAL VHDL Location of Sour ce Files
(Windo ws)

Libraries Location of Sour ce Files (Windo ws)
UNISIM %XILINX%\vhdl\src\unisims

%%XILINX%\vhdl\src\unimacro

UNISIM 9500 %XILINX%\vhdl\src\unisims

XilinxCoreLib FPGA
Families only

%XILINX%\vhdl\src\XilinxCoreLib

SecureIP %XILINX%\secureip\ <simulator> \

SIMPRIM (All Xilinx
Technologies)

%XILINX%\vhdl\src\simprims

Simulation Librar y VITAL VHDL Required Compile Order
Libraries Compile Order
UNISIM • unisim_VCOMP.vhd

• unisim_VPKG.vhd

• primitive/vhdl_analyze_order

• unimacro_VCOMP.vhd

• all files in the UniMacro directory

UNISIM 9500 • unisim_VCOMP.vhd

• unisim_VPKG.vhd

• primitive/vhdl_analyze_order

SecureIP Functional Simulation

• UNISIM Libraries

• <simulator>_secureip_cell.list.f

• $XILINX/vhdl/src/unisims/secureip/other/
vhdl_analyze_order

Timing Simulation

• SIMPRIM Libraries

• <simulator>_secureip_cell.list.f>

• $XILINX/vhdl/src/simprims/secureip/other/
vhdl_analyze_order or
$XILINX/vhdl/src/simprims/secureip
/modelsim/vhdl_analyze_order (ModelSim only)

SIMPRIM (All Xilinx
Technologies)

• simprim_Vcomponents.vhd OR
simprim_Vcomponents _ModelSim.vhd (ModelSim
only)

• simprim_Vcomponents.vhd OR
simprim_Vpackage_mt i.vhd (ModelSim only)

• primitive/other/vhdl_analyze_order

• primitive/modelsim/vhdl_analyze_order
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Simulation Librar y Verilog Sour ce Files (Lin ux)
Libraries Location of Sour ce Files (Lin ux)
UNISIM $XILINX/verilog/src/unisims

$XILINX/verilog/src/unimacro

UNISIM 9500 $XILINX/verilog/src/uni9000

XilinxCoreLib FPGA
Families only

UNISIM Libraries
$XILINX/verilog /src/XilinxCoreLib

SecureIP UNISIM Libraries
<simulator>_secureip_cell.list.f

SIMPRIM (All Xilinx
Technologies)

$XILINX/verilog/src/simprims

Simulation Librar y Verilog Sour ce Files (Windo ws)
Libraries Location of Sour ce Files (Windo ws)
UNISIM %XILINX%\verilog\src\unisims

%XILINX%\verilog\src\unimacro

UNISIM 9500 %XILINX%\verilog\src\uni9000

XilinxCoreLib FPGA
Families only

UNISIM Libraries
%XILINX%\verilog\src\XilinxCoreLib

SecureIP UNISIM Libraries
<simulator>_secureip_cell.list.f

SIMPRIM (All Xilinx
Technologies)

%XILINX%\verilog\src\simprims

No special compilation order is required for Verilog libraries

Simulation Libraries
XST supports the following simulation libraries:

• UNISIM Library

• VHDL UNISIM Library

• Verilog UNISIM Library

• UniMacro Library

• VHDL UniMacro Library

• Verilog UniMacro Library

• CORE Generator™ Software XilinxCoreLib Library

• SIMPRIM Library

• SecureIP Libraries

• VHDL SecureIP Library

• Verilog SecureIP Library

• Xilinx® Simulation Libraries (Compxlib)

Synthesis and Simulation Design Guide
114 www.xilinx.com UG626 (v13.4) January 19, 2012



Chapter 6: Simulating Your Design

UNISIM Librar y
The UNISIM Library is used for functional simulation and synthesis only. This library
includes:
• All Xilinx Unified Library primitives that are inferred by most synthesis tools
• Primitives that are commonly instantiated, such as:

– DCM

– BUFG

– MGT

Xilinx recommends that you infer most design functionality using behavioral Register
Transfer Level (RTL) code unless:
• The desired component is not inferable by your synthesis tool, or
• You want to take manual control of mapping and placement of a function

VHDL UNISIM Librar y
The VHDL UNISIM library is split into four files containing:
• The component declarations (unisim_VCOMP.vhd )
• Package files (unisim_VPKG.vhd )
• Entity and architecture declarations (unisim_VITAL.vhd )

All primitives for all Xilinx device families are specified in these files. To use these
primitives, place the following two lines at the beginning of each file:

Library UNISIM;
use UNISIM.vcomponents.all;

Verilog UNISIM Librar y
For Verilog, each library component is specified in a separate file. This allows automatic
library expansion using the -y library specification switch. All Verilog module names
and file names are all upper case. For example, module BUFGis BUFG.v, and module
IBUF is IBUF.v . Since Verilog is case-sensitive, make sure that all UNISIM primitive
instantiations adhere to this upper-case naming convention.

If you are using pre-compiled libraries, use the correct directive to point to the
precompiled libraries. Following is an example for ModelSim:

-L unisims_ver

UniMacr o Librar y
The UniMacro library:
• Is used for functional simulation and synthesis only.
• Provides macros to aid the instantiation of complex Xilinx primitives.
• Is an abstraction of the primitives in the UNISIM library. The synthesis tools

automatically expand each UniMacro to its underlying primitive.

For more information, see the Libraries Guides.

VHDL UniMacr o Librar y
To use these macros, place the following two lines at the beginning of each file, in
addition to the UNISIM declarations:

Library UNIMACRO;
use UNIMACRO.vcomponents.all
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Verilog UniMacr o Librar y
For Verilog, each macro component is specified in a separate file. This allows automatic
library expansion using the -y library specification switch. All Verilog module names
and file names are all UPPER CASE. Since Verilog is case-sensitive, make sure that all
UniMacro instantiations adhere to this UPPER CASE naming convention.

If you are using pre-compiled libraries, use the correct directive to point to the
precompiled libraries. Following is an example for ModelSim:

-L unimacro_ver

CORE Generator Software XilinxCoreLib Librar y
The CORE Generator software is a graphical intellectual property (IP) design tool for
creating high-level modules such as:
• FIR Filters
• FIFOs
• CAMs
• Other advanced IP

You can customize and pre-optimize modules to take advantage of the inherent
architectural features of Xilinx FPGA devices, such as:
• Block multiplier
• SRL
• Fast carry logic
• On-chip single-port RAM
• On-chip dual-port RAM

You can also select the appropriate HDL model type as output to integrate into your
HDL design.

The CORE Generator software HDL library models are used for Register Transfer Level
(RTL) simulation.

SIMPRIM Librar y
The SIMPRIM library is used for the following simulations:
• Post NGDBuild (gate level functional)
• Post-Map (partial timing)
• Post-Place and Route (full timing)

The SIMPRIM library is architecture independent.

SecureIP Libraries
IP Blocks are fully supported in ISim without additional setup. For more information
see the ISim User Guide (UG660). Xilinx leverages the latest encryption methodology
as specified in Verilog LRM - IEEE Std 1364–2005. Virtex®-4 and Virtex-5 device
simulation models for the IP such as PowerPC processors, MGT, and PCIe® leverages
this technology. Everything is automatically handled by means of Compxlib, provided
the appropriate version of the simulator is present on your computer. When running
a simulation with this new methodology in Verilog, you must reference the SecureIP
library. For most simulators, this can be done by using the -L switch as an argument to
the simulator, such as -L secureip . For the switch to use with your simulator, see
your simulator documentation.

Note Use the -Ica switch when using SecureIP.
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The table below lists special considerations that need to be arranged with your simulator
vendor for using these libraries.

Special Considerations for Using SecureIP Libraries
Simulator Name Vendor Special Requirements
ModelSim SE

ModelSim PE

ModelSim DE

Questa Sim

Mentor
Graphics

If design entry is in VHDL, a mixed language license
or a SecureIP OP is required. Please contact the vendor
for more information.

IUS Cadence An export control regulation license is required.

VCS Synopsys The usage of –lca switch with the VCS commands are
required when simulating designs with SecureIP in them

VHDL SecureIP Librar y
If you are using VHDL for your design entry, a mixed-language license (or the SecureIP
Op for Mentor products) is required to run any IP simulation. Contact your vendor for
pricing options for mixed-language simulation.

To use SecureIP, place the following two lines at the beginning of each file:

Library UNISIM;
use UNISIM.vcomponents.all;

Verilog SecureIP Librar y
These libraries can be used at compile time by leveraging the -f switch in the simulator.
Following is an example for VCS:

vcs –lca -f $XILINX/secureip/vcs/vcs_secureip_cell.list.f \
-y $XILINX/verilog/src/unisims -y $XILINX/verilog/src/xilinxcorelib \
+incdir+$XILINX/verilog/src +libext+.v $XILINX/verilog/src/glbl.v \
-Mupdate -R <testfixture> .v <design> .y

If you are using pre-compiled libraries, use the correct directive to point to the
precompiled libraries. Following is an example for ModelSim:

-L secureip

Xilinx Simulation Libraries (Compxlib)
Do NOT use with ISim.

Before beginning functional simulation, you must use Compxlib to compile the Xilinx
Simulation Libraries for the target simulator. For more information, see the Command
Line Tools User Guide (UG628).

Reducing Simulation Runtimes
Xilinx® simulation models have an optional generic/parameter (SIM_MODE) that can
reduce the simulation runtimes. SIM_MODEhas two settings:
• SIM_MODE= "SAFE"

• SIM_MODE= "FAST"

Synthesis and Simulation Design Guide
UG626 (v13.4) January 19, 2012 www.xilinx.com 117



Chapter 6: Simulating Your Design

The different settings impact simulation support of certain features of the primitive. This
setting is supported on the following UNISIM primitives:
• Virtex®-5 device BlockRAM
• Virtex-5 device FIFO
• Virtex-5 device DSP Block

The following tables list the features that are not supported when using FASTmode.

Vir tex-5 Device Bloc kRAM Features Not Suppor ted When Using
FAST Mode

Feature Description
Parameter validity checks Checks for the generics/parameters to ensure

that they are legal for the primitive in use

Cascade feature Ability to cascade multiple BlockRAMs
together

ECC feature Error checking and correction

Memory collision checks Checks to ensure that data is not being written
to and read from the same address location

Vir tex-5 Device FIFO Features Not Suppor ted When Using FAST
Mode

Feature Description
Parameter checks Checks for the generics/parameters to ensure

that they are legal for the primitive in use

Design rule checks for reset When doing a reset, the model will not check
for correct number of reset pulses being
applied

ECC feature Error checking and correction

Vir tex-5 Device DSP Bloc k Features Not Suppor ted When Using
FAST Mode

Feature Description
DRC checks – opmode and alumode The DSP48 block has various design rule

checks for the opmode and alumode settings
that have been removed

For a complete simulation, and to insure that the simulation model functions in
hardware as expected, use SAFEmode.

SIM_MODEapplies to UNISIM Register Transfer Level (RTL) simulation models only.
SIM_MODEis not supported for SIMPRIM gate simulation models. For a SIMPRIM
based simulation, the model performs every check at the cost of simulation runtimes.

Simulation of Configuration Interfaces
This section discusses Simulation of Configuration Interfaces, and includes:
• JTAG Simulation
• SelectMAP Simulation
• Spartan®-3AN In-System Flash Simulation
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JTAG Simulation
Simulation of the BSCANcomponent is supported for the following devices:
• Virtex®-4
• Virtex-5
• Virtex-6
• Virtex-7
• Spartan®-3A
• Spartan®-6

The simulation supports the interaction of the JTAGports and some of the JTAG
operation commands. The JTAG interface, including interface to the scan chain, is not
yet fully supported. In order to simulate this interface:
1. Instantiate the BSCAN_VIRTEX4, BSCAN_VIRTEX5, BSCAN_VIRTEX6,

BSCAN_SPARTAN3A, or BSCAN_SPARTAN6component and connect it to the design.
2. Instantiate the JTAG_SIM_VIRTEX4, JTAG_SIM_VIRTEX5, JTAG_SIM_VIRTEX6,

JTAG_SIM_SPARTAN3A, or JTAG_SIM_SPARTAN6component into the test bench
(not the design).

This becomes:
• The interface to the external JTAGsignals (such as TDI , TDO, and TCK)
• The communication channel to the BSCANcomponent

The communication between the components takes place in the VPKG VHDL package
file or the glbl Verilog global module. Accordingly, no implicit connections are
necessary between the specific JTAG_SIM_(Device) component and the design, or
the specific BSCAN_(Device) symbol.

Stimulus can be driven and viewed from the specific JTAG_SIM_(Device) component
within the test bench to understand the operation of the JTAG/BSCANfunction.
Instantiation templates for both of these components are available in both the ISE®
Design Suite HDL Templates and the specific device Libraries Guides.

SelectMAP Simulation
The configuration simulation model (SIM_CONFIG_xx) with an instantiation template
allows supported configuration interfaces to be simulated ultimately showing the DONE
pin going high . This is a model of how the supported devices will react to stimulus on
the supported configuration interface. For a list of supported interfaces and devices,
see the following table. The model is set up to handle control signal activity as well as
bit file downloading. Included are internal register settings such as the CRC, IDCODE,
and Status Registers. The Sync Word can be monitored as it enters the device and
the Start Up Sequence can be monitored as it progresses. The diagram below shows
how the system should map from the hardware to the simulation environment. The
configuration process is specifically outlined in the Configuration User Guides for each
device family. These guides contain information on the configuration sequence as well
as the configuration interfaces.

Suppor ted Configuration Devices and Modes
Devices SelectMAP Serial SPI BPI
Virtex®-6 Yes Yes No No

Virtex®-5 Yes No No No

Spartan®-6 Yes Yes No No

Spartan®-3A Yes No No No
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Bloc k Diagram of Model Interaction

System Level Description
This model simulates the entire device and is to be used at a system level. Applications
using a processor to control the configuration logic can leverage this model to ensure
proper wiring, control signal handling, and data input alignment. Applications that
control the data loading process with the CS(SelectMAP Chip Select) or CLKsignal can
be tested to ensure proper data alignment. Systems that need to perform a SelectMAP
ABORTor Readback can also leverage this model.

There is a zip file associated with this model at
ftp://ftp.xilinx.com/pub/documentation/misc/config_test_bench.zip. This zip file has
sample test benches simulating a processor running the SelectMAP logic. These test
benches have control logic to emulate a processor controlling the SelectMAP interface.
Features such as a full configuration, ABORT, and Readback of the IDCODE and Status
Registers are included. The host system being simulated must have a method for
file delivery as well as control signal management. These control systems should
be designed as set forth in the Configuration User Guides. This model allows the
configuration interface control logic to be tested before the hardware is available.

The model also demonstrates what is occurring inside of the device during the
configuration procedure when a bitfile is loaded into the device. During the bitfile
download, the model is processing each command and changing registers setting
that mirror the hardware changes. The CRC register can be monitored as it actively
accumulates a CRC value. The model also shows the Status Register bits being set as the
device progresses through the different states of configuration.

Debugging with the Model
This model provides an example of a correct configuration. This example can be
leveraged to assist in the debug procedure if problems are encountered. The Status
Register contains information in regards to the current status of the device and is very
useful in debugging. This register can be read out of the device via JTAG using iMPACT.
If problems are encountered on the board, the Status Register read from impact should
be one of the first debugging steps taken.

Once the status register has been read, it can be mapped to the simulation. This will
point out what stage of configuration the device is in. For example, the GHIGH bit is set
after the data load if this bit has not been set the data loading did not complete. The
GTW, GWE, and DONEsignals all set in BitGen that are released in the start up sequence
can be monitored.
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The model also allows for error injection. The active CRC logic detects any problems if
the data load is paused and started again with any problems. Bit flips manually inserted
in the bitfile are also detected and handled just as the device would handle this error.

Suppor ted Features
Each device-specific Configuration User Guides outlines the supported methods of
interacting with each configuration interface. The tables Spartan-3A Slave SelectMAP
Features Supported by the Model and Virtex-5 Slave SelectMAP Features Supported
by the Model shows which features discussed in the Configuration User Guides are
supported.

Readback of configuration data is not supported by the model. The model does not store
configuration data provided although a CRC value is calculated. Readback can only
be performed on specific registers to ensure a valid command sequence and signal
handling is provided to the device. The model is not intended to allow readback data
files to be produced.

Slave SelectMAP and Serial Features Suppor ted by the Model for
all Device Families

Slave SelectMAP and Serial Features Suppor ted
Master mode No

Daisy Chaining Spartan-3E device and
Spartan-3A device Slave Parallel Daisy Chains

Yes

Daisy Chaining Slave Parallel Daisy Chains
Using Any Modern Xilinx® FPGA Family

No

SelectMAP Data Loading Yes

Continuous SelectMAP Data Loading Yes

Non-Continuous SelectMAP Data Loading Yes

SelectMAP ABORT Yes

SelectMAP Reconfiguration No

SelectMAP Data Ordering Yes

Reconfiguration and MultiBoot No

Configuration CRC – CRC Checking during
Configuration

Yes

Configuration CRC – Post-Configuration CRC No

BitGen modifications to DONE_cycle ,
GTS_cycle , GWE_cycle

Yes

BitGen modifications other options from the
default value

Altering DONE, GTS, and GWErelease positions
affects only their timing

Wait for DCM simulation capabilities Yes (Spartan®-6 only)
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Vir tex-5 Device Slave SelectMAP Features Suppor ted by the Model
Features (Configuration User Guides /
Software Manual Sections)

Suppor ted

Master mode No

Single Device SelectMAP Configuration Yes

Multiple Device SelectMAP Configuration Yes

Parallel Daisy Chain Yes

Ganged SelectMAP Yes

SelectMAP Data Loading Yes

SelectMAP ABORT Yes

SelectMAP Reconfiguration No

SelectMAP Data Ordering Yes

Readback and Configuration Verification Only the IDCODE and Status Registers can
be readback

Reconfiguration and MultiBoot No

Readback CRC No

BitGen modifications to DONE_cycle ,
GTS_cycle , GWE_cycle

Altering DONE, GTS, and GWErelease positions
affects only their timing

BitGen modifications other options from the
default value

No

Spar tan-3AN In-System Flash Simulation
Spartan-3AN devices have an internal memory feature that can be used for initial
configuration, multiboot, user memory, or a combination of these. To access the memory
once the device is configured, the application loaded into the FPGA device must use
a special design primitive called SPI_ACCESS. All data accesses to and from the ISF
(In System Flash) memory are performed using an SPI (Serial Peripheral Interface)
protocol. Neither the Spartan-3AN device itself, nor the SPI_ACCESSprimitive,
includes a dedicated SPI master controller. Instead, the control logic is implemented
using the programmable logic resources of the FPGA device. The SPI_ACCESS
primitive essentially connects the FPGA device application to the In-System Flash
memory array. The simulation model allows you to test the behavior of this interface in
simulation. This interface consists of the four standard SPI connections:

• MOSI (Master Out Slave In)

• MISO (Master In Slave Out)

• CLK (Clock)

• CSB(Active-Low Chip Select)
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Spar tan-3AN SPI_ACCESS Connections to ISF Memor y

SPI_ACCESS Suppor ted Commands
The SPI_ACCESSsimulation model supports only a subset of the total commands that
can be run in hardware. The commands that are supported in the model are shown
in the table below. These have been tested and verified to work in the model and on
silicon. All other commands are not supported in the simulation model, though they
will work as expected in hardware and are still discussed in other documentation. For
a complete explanation of all commands, see the Spartan-3AN FPGA In-System Flash
User Guide (UG333).

SPI_ACCESS Suppor ted Commands
Command Common Application Hex Command Code
Fast Read Reading a large block of

contiguous data, if CLK
frequency is above 33 MHz

0x0B

Random Read Reading bytes from
randomly-addressed
locations, all read operations
at 33 MHz or less

0x03

Status Register Read Check ready/busy for
programming commands,
result of compare, protection,
addressing mode, and similar

0xD7

Information Read Read JEDEC Manufacturer
and Device ID

0x9F

Security Register Read Performs a read on the
contents of the security
register.

0x77

Security Register Program Programs the User-Defined
Field in the Security Register

0x9B

Buffer Write Write data to SRAM page
buffer; when complete,
transfer to ISF memory using
Buffer to Page Program
command

Buffer1- 0x84, Buffer2- 0x87
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Command Common Application Hex Command Code
Buffer2 Buffer to Page Program with

Built-in Erase
First erases selected memory
page and programs page with
data from designated buffer

Buffer1 Buffer2- 0x86 Buffer1- 0x83, Buffer to Page
Program without Built-in
Erase

Program a previously
erased page with data from
designated buffer

Buffer1- 0x88 Buffer2- 0x89

Page Program Through Buffer
with Erase

Combines Buffer Write with
Buffer to Page Program with
Built-in Erase command

Buffer1- 0x82

Buffer2- 0x85 Page to Buffer Compare Verify that the ISF memory
array was programmed
correctly

Buffer1- 0x60 Buffer2- 0x61 Page to Buffer Transfer

Transfers the entire contents
of a selected ISF memory page
to the specified SRAM page
buffer

Buffer1- 0x53 Buffer2- 0x55

Sector Erase Erases any unprotected,
unlocked sector in the main
memory

0x7C

Page Erase Erases any individual page in
the ISF memory array

0x81

SPI_ACCESS Memor y Initialization
The user-created memory file used to initialize the ISF is a list of Hex bytes in ASCII
format. The file should have one ASCII coded hex byte on each line, where the number
of lines is decided by the memory size. The file initializes the ISF memory space.

If the size of the memory in the file does not match the size of the memory for the device,
a message warns that the file is either too large or too small.

• If the initialization file is too short, the rest of the memory is filled with 0xFF.

• If the initialization file is too long, the unneeded bytes are left unused.

The following table shows the memory size available for each of the devices.

ISF Availab le Memor y Size
Device ISF Memor y Bits Availab le User

Memor y (Bytes)
Lines in
Initialization File

3S50AN 1M + 135,168 135,168

3S200AN 4M + 540,672 540,672

3S400AN 4M + 540,672 540,672

3S700AN 8M + 1,081,344 1,081,344

3S1400AN 16M + 2,162,688 2,162,688
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SPI_ACCESS Attrib utes
Five attributes can be set for the SPI_ACCESScomponent.

• SPI_ACCESS SIM_DEVICE

• SPI_ACCESS SIM_USER_ID

• SPI_ACCESS SIM_MEM_FILE

• SPI_ACCESS SIM_FACTORY_ID

• SPI_ACCESS SIM_DELAY_TYPE

SPI_ACCESS SIM_DEVICE Attrib ute
SIM_DEVICE defines which Spartan-3AN device you are using. This allows the proper
SPI Flash size to be set. SIM_DEVICE is required

SPI_ACCESS SIM_USER_ID Attrib ute
SIM_USER_ID is used in simulation to initialize the User-Defined Field of the Security
Register. In hardware, it can be programmed with any value at any time. This field is
one-time programmable (OTP). The default delivered state is erased, and all locations
are 0xFF . SIM_USER_ID is a 512 bit reg in Verilog and a 512 bit bit_vector in VHDL with
the exact hex values you want in simulation. Bit 511 is the first bit out of the user portion
of the security register. Bit 0 is the last bit out of the user portion of the security register.

SPI_ACCESS SIM_MEM_FILE Attrib ute
SIM_MEM_FILE specifies the file and directory name of the memory initialization file.
For more information, see SPI_ACCESSMemory Initialization.

SPI_ACCESS SIM_FACTORY_ID Attrib ute
SIM_FACTORY_IDis used for simulation purposes only. SIM_FACTORY_IDallows you
to set a unique value to the Unique Identifier portion of the security register. This value
is read back by sending an Information Read command. The default for the Factory
ID is all ones .

In simulation, the FACTORY_IDcan be written only once. As soon as a value other than
one is detected in the factory ID, no further writing is allowed.

In the hardware, each individual device has a unique factory programmed ID in this
field. It cannot be reprogrammed or erased.

SPI_ACCESS SIM_DELAY_TYPE Attrib ute
SIM_DELAY_TYPEis used to scale the chip delays down to more reasonable values
for simulation. If SIM_DELAY_TYPEis set to ACCURATE, the model enforces the real
timing specifications such as five (5) seconds for sector erase. If SIM_DELAY_TYPEis
set to SCALED, it enforces much shorter time delays which are scaled back for faster
simulation runtimes. The device behavior is not affected.
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SPI_ACCESS Availab le Attrib utes
Attrib ute Type Allo wed

Values
Default Description

SIM_DEVICE String 3S50AN

3S200AN

3S400AN

3S700AN

3S1400AN

3S1400AN Specifies the
target device so
that the proper
size SPIMemory
is used. This
attribute should
be modified
to match the
device under
test.

SIM_USER_ID 64-byte Hex
Value

Any 64-byte hex
value

All locations
default to 0xFF

Specifies the
programmed
USER ID in
the Security
Register for the
SPI Memory

SIM_MEM_FILE String Specified file
and directory
name

NONE Optionally
specifies a hex
file containing
the initialization
memory content
for the SPI
Memory

SIM_FACTORY_ID 64-byte Hex
Value

Any 64-byte
Hex Value

All locations
default to 0xFF

Specifies
the Unique
Identifier value
in the Security
Register for
simulation
purposes (the
actual HWvalue
will be specific
to the particular
device used).

SIM_DELAY_TYPE String ACCURATE

SCALED

SCALED Scales down
some timing
delays for faster
simulation run.
ACCURATE
= timing
and delays
consistent with
datasheet specs.
SCALED =
timing numbers
scaled back
to run faster
simulation,
behavior not
affected.

For more information on using the SPI_ACCESSprimitive, see the Libraries Guides.
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Disab ling Bloc kRAM Collision Checks for Simulation
Xilinx® block RAM memory is a true dual-port RAM where both ports can access any
memory location at any time. Be sure that the same address space is not accessed for
reading and writing at the same time. This will cause a block RAM address collision.
These are valid collisions, since the data that is read on the read port is not valid. In the
hardware, the value that is read might be the old data, the new data, or a combination
of the old data and the new data. In simulation, this is modeled by outputting X since
the value read is unknown. For more information on block RAM collisions, see the
Device User Guide.

In certain applications, this situation cannot be avoided or designed around. In these
cases, the block RAM can be configured not to look for these violations. This is
controlled by the generic (VHDL) or parameter (Verilog) SIM_COLLISION_CHECK
in all the Xilinx block RAM primitives.

SIM_COLLISION_CHECK Strings
Use the strings shown in the following table to control what happens in the event of a
collision.

SIM_COLLISION_CHECK Strings
String Write Collision Messages Write Xs on the Output
ALL Yes Yes

WARN_ONLY Yes No

Applies only at the time of
collision. Subsequent reads of
the same address space may
produce Xs on the output.

GENERATE_X_ONLY No Yes

None No No

Applies only at the time of
collision. Subsequent reads of
the same address space may
produce Xs on the output.

SIM_COLLISION_CHECKcan be applied at an instance level. This enables you to change
the setting for each block RAM instance.

Global Reset and Tristate for Simulation
Xilinx® FPGA devices have dedicated routing and circuitry that connects to every
register in the device. The dedicated Global Set/Reset (GSR) net is asserted, and is
released during configuration immediately after the device is configured. All the
flip-flops and latches receive this reset, and are either set or reset, depending on how
the registers are defined.

Although you can access the GSR net after configuration, Xilinx does not recommend
using the GSR circuitry in place of a manual reset. This is because the FPGA devices
offer high-speed backbone routing for high fanout signals such as a system reset. This
backbone route is faster than the dedicated GSR circuitry, and is easier to analyze than
the dedicated global routing that transports the GSR signal.
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In back-end simulations, a GSR signal is automatically pulsed for the first 100 ns to
simulate the reset that occurs after configuration. A GSR pulse can optionally be
supplied in front end functional simulations, but is not necessary if the design has a
local reset that resets all registers. When you create a test bench, remember that the
GSR pulse occurs automatically in the back-end simulation. This holds all registers in
reset for the first 100 ns of the simulation.

In addition to the dedicated global GSR, all output buffers are set to a high impedance
state during configuration mode with the dedicated Global Tristate (GTS) net. All
general-purpose outputs are affected whether they are regular, tristate, or bi-directional
outputs during normal operation. This ensures that the outputs do not erroneously
drive other devices as the FPGA device is configured.

In simulation, the GTS signal is usually not driven. The circuitry for driving GTS is
available in the back-end simulation and can be optionally added for the front end
simulation, but the GTS pulse width is set to 0 by default.

Using Global Tristate (GTS) and Global Set/Reset (GSR) Signals in
an FPGA Device

The following diagram shows how Global Tristate (GTS) and Global Set/Reset (GSR)
signals are used in an FPGA device.

Built-in FPGA Initialization Circuitr y Diagram

Global Set/Reset (GSR) and Global Tristate (GTS) in Verilog
The Global Set/Reset (GSR) and Global Tristate (GTS) signals are defined in the
$XILINX/verilog/src/glbl.v module.

Since the glbl.v module connects the global signals to the design, it is necessary to
compile this module with the other design files and load it along with the design.v file
and the testfixture.v file for simulation.

In most cases, GSR and GTS need not be defined in the test bench. The glbl.v file
declares the global GSR and GTS signals and automatically pulses GSR for 100 ns. This
is all that is necessary for back-end simulations, and is usually all that is necessary for
functional simulations.
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Design Hierar chy and Simulation
Hierarchy:
• Makes the design easier to read
• Makes the design easier to re-use
• Allows partitioning for a multi-engineer team
• Improves verification

Improving Design Utilization and Performance
To improve design utilization and performance, the synthesis tool or the Xilinx®
implementation tools often flatten or modify the design hierarchy. After this flattening
and restructuring of the design hierarchy in synthesis and implementation, it may
become impossible to reconstruct the hierarchy.

As a result, much of the advantage of using the original design hierarchy in Register
Transfer Level (RTL) verification is lost in back-end verification. In order to improve
visibility of the design for back-end simulation, the Xilinx design flow allows for
retention of the original design hierarchy.

To preserve the design hierarchy through implementation with little or no degradation
in performance or increase in design resources:
• Follow stricter design rules.
• Select the design hierarchy so that optimization is not necessary across the design

hierarchy.

Good Design Practices
For optimal designs:
• Register all outputs exiting a preserved entity or module.
• Do not allow critical timing paths to span multiple entities or modules.
• Keep related or possibly shared logic in the same entity or module.
• Place all logic that is to be placed or merged into the I/O (such as Input Output Block

(IOB) registers, tristate buffers, and instantiated I/O buffers) in the top-level module
or entity for the design. This includes double-data rate registers used in the I/O.

• Manually duplicate high-fanout registers at hierarchy boundaries if improved
timing is necessary.

Maintaining the Hierar chy
To maintain the entire hierarchy (or specified parts of the hierarchy) during synthesis,
you must first instruct the synthesis tool to preserve hierarchy for all levels (or for each
selected level of hierarchy). This may be done with:
• A global switch
• A compiler directive in the source files
• A synthesis command

For more information on how to retain hierarchy, see your synthesis tool documentation.

After taking the necessary steps to preserve hierarchy, and properly synthesizing the
design, the synthesis tool creates a hierarchical implementation file (Electronic Data
Interchange Format (EDIF) or NGC) that retains the hierarchy.
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Before implementing the design with the Xilinx® software, place a Keep Hierarchy
constraint on each instance in the design in which the hierarchy is to be preserved. Keep
Hierarchy tells the Xilinx software which parts of the design should not be flattened or
modified to maintain proper hierarchy boundaries.

Keep Hierarchy may be passed in the source code as an attribute, as an instance
constraint in the Netlist Constraints File (NCF) or User Constraints File (UCF), or may
be automatically generated by the synthesis tool.

For more information, see your synthesis tool documentation.

For more information on Keep Hierarchy, see the Constraints Guide (UG625).

After the design is mapped, placed, and routed, run NetGen using the following
parameters to properly back-annotate the hierarchy of the design.

netgen -sim -ofmt {vhdl|verilog} design_name .ncd netlist_name

This is the NetGen default when you use ISE® Design Suite or XFLOW to generate the
simulation files. It is necessary to know this only if you plan to execute NetGen outside
of ISE Design Suite or XFLOW, or if you have modified the default options in ISE Design
Suite or XFLOW. When you run NetGen in the preceding manner, all hierarchy that was
specified to Keep Hierarchy is reconstructed in the resulting VHDL or Verilog netlist.

NetGen can write out a separate netlist file and Standard Delay Format (SDF) file for
each level of preserved hierarchy. This capability allows for full timing simulation of
individual portions of the design, which in turn allows for:
• Greater test bench re-use
• Team-based verification methods
• The potential for reduced overall verification times

Use the –mhf switch to produce individual files for each Keep Hierarchy instance in
the design. You can also use the –mhf switch together with the –dir switch to place
all associated files in a separate directory.

netgen -sim -ofmt {vhdl|verilog} -mhf -dir directory_name
design_name .ncd

When you run NetGen with the –mhf switch, NetGen produces a text file called
design_mhf_info.txt . The design_mhf_info.txt file lists all produced module
and entity names, their associated instance names, Standard Delay Format (SDF) files,
and sub modules. The design_mhf_info.txt file is useful for determining proper
simulation compile order, SDF annotation options, and other information when you use
one or more of these files for simulation.

Example mhf_inf o.txt File
Following is an example of an mhf_info.txt file for a VHDL produced netlist:

// Xilinx design hierarchy information file produced by netgen
// The information in this file is useful for
// - Design hierarchy relationship between modules
// - Bottom up compilation order (VHDL simulation)
// - SDF file annotation (VHDL simulation)
//
// Design Name : stopwatch
//
// Module : The name of the hierarchical design module.
// Instance : The instance name used in the parent module.
// Design File : The name of the file that contains the module.
// SDF File : The SDF file associated with the module.
// SubModule : The sub module(s) contained within a given module.
// Module, Instance : The sub module and instance names.
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Module : hex2led_1
Instance : msbled
Design File : hex2led_1_sim.vhd
SDF File : hex2led_1_sim.sdf
SubModule : NONE

Module : hex2led
Instance : lsbled
Design File : hex2led_sim.vhd
SDF File : hex2led_sim.sdf
SubModule : NONE

Module : smallcntr_1
Instance : lsbcount
Design File : smallcntr_1_sim.vhd
SDF File : smallcntr_1_sim.sdf
SubModule : NONE

Module : smallcntr
Instance : msbcount
Design File : smallcntr_sim.vhd
SDF File : smallcntr_sim.sdf
SubModule : NONE

Module : cnt60
Instance : sixty
Design File : cnt60_sim.vhd
SDF File : cnt60_sim.sdf
SubModule : smallcntr, smallcntr_1

Module : smallcntr, Instance : msbcount
Module : smallcntr_1, Instance : lsbcount

Module : decode
Instance : decoder
Design File : decode_sim.vhd
SDF File : decode_sim.sdf
SubModule : NONE

Module : dcm1
Instance : Inst_dcm1
Design File : dcm1_sim.vhd
SDF File : dcm1_sim.sdf
SubModule : NONE

Module : statmach
Instance : MACHINE
Design File : statmach_sim.vhd
SDF File : statmach_sim.sdf
SubModule : NONE

Module : stopwatch
Design File : stopwatch_timesim.vhd
SDF File : stopwatch_timesim.sdf
SubModule : statmach, dcm1, decode, cnt60, hex2led, hex2led_1

Module : statmach, Instance : MACHINE
Module : dcm1, Instance : Inst_dcm1
Module : decode, Instance : decoder
Module : cnt60, Instance : sixty
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Module : hex2led, Instance : lsbled
Module : hex2led_1, Instance : msbled

Hierarchy created by generate statements may not match the original simulation due to
naming differences between the simulator and synthesis engines for generated instances.

Register Transf er Level (RTL) Simulation Using Xilinx Libraries
Xilinx® simulation libraries can be simulated using any simulator that supports
the VHDL-93 and Verilog-2001 language standards. Certain delay and modelling
information is built into the libraries, which is required to correctly simulate the Xilinx
hardware devices.

Do not change data signals at clock edges, even for functional simulation. The simulators
add a unit delay between the signals that change at the same simulator time. If the data
changes at the same time as a clock, it is possible that the data input will be scheduled by
the simulator to occur after the clock edge. The data will not go through until the next
clock edge, although it is possible that the intent was to have the data clocked in before
the first clock edge. To avoid such unintended simulation results, do not switch data
signals and clock signals simultaneously.

Delta Cycles and Race Conditions
All Xilinx® supported simulators are event-based simulators. Event-based simulators
can process multiple events at a given simulation time. While these events are being
processed, the simulator may not advance the simulation time. This time is commonly
referred to as delta cycles. There can be multiple delta cycles in a given simulation
time. Simulation time is advanced only when there are no more transactions to process.
For this reason, simulators may give unexpected results. The following VHDL coding
example shows how an unexpected result can occur.

VHDL Coding Example With Unexpected Results
clk_b <= clk;
clk_prcs : process (clk)
begin

if (clk'event and clk='1') then
result <= data;

end if;
end process;

clk_b_prcs : process (clk_b)
begin

if (clk_b'event and clk_b='1') then
result1 <= result;

end if;
end process;

In this example, there are two synchronous processes:

• clk

• clk_b

The simulator performs the clk <= clk_b assignment before advancing the
simulation time. As a result, events that should occur in two clock edges will occur
instead in one clock edge, causing a race condition.
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Recommended ways to introduce causality in simulators for such cases include:

• Do not change clock and data at the same time. Insert a delay at every output.

• Be sure to use the same clock.

• Force a delta delay by using a temporary signal as follows:

clk_b <= clk;
clk_prcs : process (clk)
begin
end if;

end process;
result_temp <= result;
clk_b_prcs : process (clk_b)
begin

if (clk_b'event and clk_b='1') then
result1 <= result_temp;

end if;
end process;

Almost every event-based simulator can display delta cycles. Use this to your advantage
when debugging simulation issues.

Recommended Simulation Resolution
Xilinx® recommends that you run simulations using a resolution of 1ps . Some Xilinx
primitive components, such as DCM, require a 1ps resolution in order to work properly
in either functional or timing simulation.

There is no simulator performance gain by using coarser resolution with the Xilinx
simulation models. Since much simulation time is spent in delta cycles, and delta cycles
are not affected by simulator resolution, no significant simulation performance can be
obtained.

Xilinx recommends that you not run at a finer resolution such as fs . Some simulators
may round the numbers, while other simulators may truncate the numbers.

Picosecond is used as the minimum resolution since all testing equipment can measure
timing only to the nearest picosecond resolution. Xilinx strongly recommends using
ps for all Hardware Description Language (HDL) simulation purposes.

Encr yption Methodology Used for SecureIP Models
Xilinx® leverages the latest encryption methodology as specified in Verilog LRM - IEEE
Std 1364-2005. Device simulation models for the IP such as the PowerPC® processor,
MGT, and PCIe® leverages this technology

Everything is automatically handled by means of Compxlib, provided the appropriate
version of the simulator is present on your computer. When running a simulation with
this new methodology in Verilog, you must reference the SecureIP library.

For most simulators, this can be done by using the -L switch as an argument to the
simulator, such as -L secureip . For more information, see SecureIP Libraries.

For the switch to use with your simulator, see your simulator documentation.

If using VHDL as the design entry, a mixed-language license is required to run any IP
simulation using this new IP Encryption Methodology.
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Generating Gate-Level Netlist (Running NetGen)
NetGen can create a verification netlist file from your design files. To create a timing
simulation netlist, run NetGen from any of the following:
• ISE® Design Suite

For information on creating a back-annotated simulation netlist in ISE, see the ISE
Help.

• XFLOW
To display the available options for XFLOW, and for a complete list of the XFLOW
option files, type xflow at the prompt without any arguments. For complete
descriptions of the options and the option files, see the Command Line Tools User
Guide (UG628).

• Command Line or Script File
To create a simulation netlist from the command line or a script file, see the NetGen
chapter in the Command Line Tools User Guide (UG628).

Disab ling X Propagation for Synchronous Elements
When a timing violation occurs during a timing simulation, the default behavior of a
latch, register, RAM, or other synchronous element outputs an X to the simulator.

This occurs because the actual output value is not known. The output of the register
could:
• Retain its previous value
• Update to the new value
• Go metastable, in which a definite value is not settled upon until some time after

the clocking of the synchronous element

Since this value cannot be determined, and accurate simulation results cannot be
guaranteed, the element outputs an X to represent an unknown value. The X output
remains until the next clock cycle in which the next clocked value updates the output if
another violation does not occur.

X generation can significantly affect simulation. For example, an X generated by one
register can be propagated to others on subsequent clock cycles. This may cause large
portions of the design being tested to become unknown. To correct this:
• On a synchronous path, analyze the path and fix any timing problems associated

with this or other paths to ensure a properly operating circuit.
• On an asynchronous path, if you cannot otherwise avoid timing violations, disable

the X propagation on synchronous elements during timing violations.
When X propagation is disabled, the previous value is retained at the output of the
register. In the actual silicon, the register may have changed to the 'new' value.
Disabling X propagation may yield simulation results that do not match the silicon
behavior.

Caution! Exercise care when using this option. Use it only if you cannot otherwise
avoid timing violations.

Using the ASYNC_REG Constraint
The ASYNC_REGconstraint:
• Identifies asynchronous registers in the design
• Disables X propagation for those registers
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ASYNC_REGcan be attached to a register in the front end design by:

• An attribute in the Hardware Description Language (HDL) code, or

• A constraint in the User Constraints File (UCF)

The registers to which ASYNC_REGis attached retain the previous value during timing
simulation, and do not output an X to simulation.

A timing violation error may still occur. Use care, as the new value may have been
clocked in as well.

ASYNC_REGis applicable to CLBand Input Output Block (IOB) registers and latches
only. If you cannot avoid clocking in asynchronous data, Xilinx® recommends that
you do so for IOB or CLB registers only. Clocking in asynchronous signals to RAM,
Shift Register LUT (SRL), or other synchronous elements has less deterministic results,
and therefore should be avoided.

Xilinx highly recommends that you first properly synchronize any asynchronous signal
in a register, latch, or FIFO before writing to a RAM, Shift Register LUT (SRL), or any
other synchronous element.

For more information, see the Constraints Guide (UG625).

MIN/TYP/MAX Simulation
The Standard Delay Format (SDF) file allows you to specify three sets of delay values
for simulation:

• Minimum (MIN)

• Typical (TYP)

• Maximum (MAX)

Xilinx® uses these values to allow the simulation of the target architecture under
various operating conditions. By allowing for the simulation across various operating
conditions, you can perform more accurate setup and hold timing verification.

Minim um (MIN)
Minimum (MIN) represents the device under the best case operating conditions. The
base case operating conditions are defined as the minimum operating temperature, the
maximum voltage, and the best case process variations. Under best case conditions, the
data paths of the device have the minimum delay possible, while the clock path delays
are the maximum possible relative to the data path delays. This situation is ideal for
hold time verification of the device.

Typical (TYP)
Typical (TYP) represents the typical operating conditions of the device. In this situation,
the clock and data path delays are both the maximum possible. This is different from
the Maximum (MAX) field, in which the clock paths are the minimum possible relative
to the maximum data paths. Xilinx generated Standard Delay Format (SDF) files do
not take advantage of this field.
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Maximum (MAX)
Maximum (MAX) represents the delays under the worst case operating conditions of the
device. The worst case operating conditions are defined as the maximum operating
temperature, the minimum voltage, and the worst case process variations. Under worst
case conditions, the data paths of the device have the maximum delay possible, while
the clock path delays are the minimum possible relative to the data path delays. This
situation is ideal for setup time verification of the device.

Obtaining Accurate Timing Simulation Results
Run the following to obtain the most accurate setup and hold timing simulations:
• NetGen
• Setup Simulation
• Hold Simulation

Run NetGen
To obtain accurate Standard Delay Format (SDF) numbers, run netgen with -pcf
pointing to a valid Physical Constraints File (PCF). NetGen must be run with -pcf since
newer Xilinx® devices take advantage of relative mins for timing information. Once
netgen is called with -pcf the Minimum (MIN) and Maximum (MAX) numbers in the
SDF file will be different for the components.

Once the correct SDF file is created, two types of simulation must be run for complete
timing closure:
• Setup Simulation
• Hold Simulation

In order to run the different simulations, the simulator must be called with the
appropriate switches.

Run Setup Simulation
To perform a Setup Simulation, specify values in the Maximum (MAX) field with the
-SDFMAX command line option.

Run Hold Simulation
To perform the most accurate Hold Simulation, specify values in the Minimum (MIN)
field with the -SDFMIN command line option.

For more information on passing the SDF switches to the simulator, see your simulator
tool documentation.

Absolute Min Simulation
NetGen can optionally produce absolute minimum delay values for simulation by
applying the -s min switch. The resulting Standard Delay Format (SDF) file has the
absolute process minimums populated in all three SDF fields:
• Minimum (MIN)
• Typical (TYP)
• Maximum (MAX)
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Absolute process Minimum (MIN) values are the absolute fastest delays that a path
can run in the target architecture given the best operating conditions within the
specifications of the architecture:
• Lowest temperature
• Highest voltage
• Best possible silicon

Generally, these process minimum delay values are only useful for checking board-level,
chip-to-chip timing for high-speed data paths in best case and worst case conditions.

By default, the worst case delay values are derived from the worst temperature, voltage,
and silicon process for a particular target architecture. If better temperature and voltage
characteristics can be ensured during the operation of the circuit, you can use prorated
worst case values in the simulation to gain better performance results.

The default applies worst case timing values over the specified TEMPERATUREand
VOLTAGEwithin the operating conditions recommended for the device. For more
information on the TEMPERATUREand VOLTAGEconstraints, see the Constraints Guide
(UG625).

NetGen generates a Standard Delay Format (SDF) file with Minimum (MIN) numbers
only for devices that support absolute min timing numbers.

Using the VOLTAGE and TEMPERATURE Constraints
Prorating is a linear scaling operation. It applies to existing speed file delays, and is
applied globally to all delays. The prorating constraints, VOLTAGEand TEMPERATURE,
provide a method for determining timing delay characteristics based on known
environmental parameters.

For more information on the VOLTAGEand TEMPERATUREconstraints, see the
Constraints Guide (UG625).

Using the VOLTAGE Constraint
The VOLTAGEconstraint provides a means of prorating delay characteristics based on
the specified voltage applied to the device. The User Constraints File (UCF) syntax is:

VOLTAGE=value [ units ]

where
• value is an integer or real number specifying the voltage
• units is an optional parameter specifying the unit of measure.

Using the TEMPERATURE Constraint
The TEMPERATUREconstraint provides a means of prorating device delay characteristics
based on the specified junction temperature. The UCF syntax is:

TEMPERATURE=value [ C| F| K]

where
• value

is an integer or a real number specifying the temperature
• C, F, and K are the temperature units

– C = degrees Celsius (default)
– F = degrees Fahrenheit
– K = degrees Kelvin
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The resulting values in the Standard Delay Format (SDF) fields when using prorated
VOLTAGEand TEMPERATUREvalues are the prorated worst case values.

Determining Valid Operating Temperatures and Volta ges
To determine the specific range of valid operating temperatures and voltages for the
target architecture, see the device data sheet. If the temperature or voltage specified in
the constraint does not fall within the supported range, the constraint is ignored and an
architecture specific default value is used instead.

Not all architectures support prorated timing values. For simulation, the VOLTAGEand
TEMPERATUREconstraints are processed from the User Constraints File (UCF) into the
Physical Constraints File (PCF). The PCF must then be referenced when running NetGen
in order to pass the operating conditions to the delay annotator.

To generate a simulation netlist using prorating for VHDL, type:

netgen -sim -ofmt vhdl [ options ] -pcf design .pcf design .ncd

To generate a simulation netlist using prorating for Verilog, type:

netgen -sim -ofmt verilog [ options ] -pcf design .pcf design .ncd

Combining both minimum values overrides prorating, and results in issuing only
absolute process MIN values for the simulation Standard Delay Format (SDF) file.

Prorating is available for certain FPGA devices only. It is not intended for military and
industrial ranges. It is applicable only within commercial operating ranges.

NetGen Options for Diff erent Delay Values
NetGen Option MIN:TYP:MAX Field in SDF File

Produced by netg en –sim
-pcf <pcf_file> MIN:MIN(Hold time) TYP:TYP(Ignore)

MAX:MAX(Setup time)

default MAX:MAX:MAX

–s min Process MIN: Process MIN: Process MIN

Prorated voltage or temperature in User
Constraints File (UCF) or Physical Constraints
File (PCF)

Prorated MAX: Prorated MAX: Prorated MAX

Special Considerations for DCM, DLL, and DCM_ADV
Following are special considerations for CLKDLL, DCM, and DCM_ADV:

• DLL/DCM Clocks Do Not Appear De-Skewed

• TRACE/Simulation Model Differences for DCM/DLL

• Non-LVTTL Input Drivers

• Viewer Considerations

• Attributes for Simulation and Implementation

• Understanding Timing Simulation
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DLL/DCM Clocks Do Not Appear De-Skewed
The DLL and DCMcomponents remove the clock delay from the clock entering into
the chip. As a result, the incoming clock and the clocks feeding the registers in the
device have a minimal skew within the range specified in the databook for any given
device. In timing simulation, the clocks may not appear to be de-skewed within the
range specified. This is due to the way the delays in the Standard Delay Format (SDF)
file are handled by some simulators.

The SDF file annotates the CLOCK PORTdelay on the X_FF components. Some
simulators may show the clock signal in the waveform viewer before taking this delay
into account. If the simulator is not properly de-skewing the clock, see your simulator
tool documentation to determine if your simulator tool is displaying the input port
delays in the waveform viewer at the input nodes. If so, when the CLOCK PORTdelay
on the X_FF is added to the internal clock signal, it should line up within the device
specifications in the waveform viewer with the input port clock. The simulation is
still functioning properly, the waveform viewer is just not displaying the signal at the
expected node. To verify that the DLL/DCMis functioning correctly, delays from the SDF
file may need to be accounted for manually to calculate the actual skew between the
input and internal clocks.

TRACE/Simulation Model Diff erences for DCM/DLL
To fully understand the simulation model, you must understand that there are
differences in the way:
• DLL/DCM is built in silicon
• TRACE reports their timing
• DLL/DCM is modeled for simulation

The DLL/DCMsimulation model attempts to replicate the functionality of the DLL/DCM
in the Xilinx® silicon, but it does not always do it exactly how it is implemented in the
silicon. In the silicon, the DLL/DCMuses a tapped delay line to delay the clock signal.
This accounts for input delay paths and global buffer delay paths to the feedback in
order to accomplish the proper clock phase adjustment. TRACE or Timing Analyzer
reports the phase adjustment as a simple delay (usually negative) so that you can adjust
the clock timing for static timing analysis.

As for simulation, the DLL/DCMsimulation model itself attempts to align the input clock
to the clock coming back into the feedback input. Instead of putting the delay in the DLL
or DCMitself, the delays are handled by combining some of them into the feedback path
as clock delay on the clock buffer (component) and clock net (port delay). The remainder
is combined with the port delay of the CLKFBpin. While this is different from the way
TRACE or Timing Analyzer reports it, and the way it is implemented in the silicon, the
end result is the same functionality and timing. TRACE and simulation both use a
simple delay model rather than an adjustable delay tap line similar to silicon.

The primary function of the DLL/DCMis to remove the clock delay from the internal
clocking circuit as shown in the following diagram.

Delay Locked Loop Bloc k Diagram
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Do not confuse this with de-skewing the clock. Clock skew is generally associated with
delay variances in the clock tree, which is a different matter. By removing the clock
delay, the input clock to the device pin should be properly phase aligned with the clock
signal as it arrives at each register it is sourcing. Observing signals at the DLL/DCMpins
generally does not give the proper viewpoint to observe the removal of the clock delay.

To determine if the DCMis functioning as intended, compare the input clock (at the
input port to the design) with the clock pins of one of the sourcing registers. If these are
aligned (or shifted to the desired amount), then the DLL/DCMis functioning as intended.

Non-LVTTL Input Driver s
When non-LVTTL input buffer drivers drive the clock, the DCM does not adjust for the
type of input buffer. Instead, the DCM has a single delay value to provide the optimal
amount of clock delay across all I/O standards. If you are using the same input standard
for the data, the delay values should track, and usually not cause a problem.

Even if you are not using the same input standard, the amount of delay variance usually
does not cause hold time failures. The delay variance is small compared to the amount
of input delay. The delay variance is calculated in both static timing analysis and
simulation. Proper setup time values should occur during both static timing analysis
and simulation.

Viewer Considerations
Depending on the simulator, the waveform viewer may not depict the delay timing in
the expected manner. Some simulators (including ModelSim) combine interconnect and
port delays with the input pins of the component delays. While the simulation results
are correct, the depiction in the waveform viewer may be unexpected.

Since interconnect delays are combined, when you look at a pin using the ModelSim
viewer, you do not see the transition as it happens on the pin. The simulation acts
properly, but when attempting to calculate clock delay, the interconnect delays before
the clock pin must be taken into account if the simulator you are using combines these
interconnect delays with component delays.

Attrib utes for Simulation and Implementation
Make sure that the same attributes are passed for simulation and implementation.
During implementation, DLL/DCMattributes may be passed by:

• The synthesis tool (generic or inline parameter declaration)

• The User Constraints File (UCF)

For Register Transfer Level (RTL) simulation of the UNISIM models, the simulation
attributes must be passed by means of:

• A generic (VHDL)

• Inline parameters (Verilog)

If you do not use the default setting for the DLL/DCM, make sure that the attributes for
RTL simulation are the same as those used for implementation. If not, there may be
differences between RTL simulation and the actual device implementation.

To make sure that the attributes passed to implementation are the same as those used
for simulation, use the generic mapping method (VHDL) or inline parameter passing
(Verilog), provided your synthesis tool supports these methods for passing functional
attributes.
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Under standing Timing Simulation
In back annotated (timing) simulation, the introduction of delays can cause the behavior
to differ from what is expected. Most problems are caused by timing violations in the
design, and are reported by the simulator. There are a few other situations that can
occur as discussed in this section.

Impor tance of Timing Simulation
FPGA devices require both functional and timing simulation to ensure successful
designs. FPGA designs are growing in complexity. Traditional verification
methodologies are no longer sufficient. In the past, simulation was not an important
stage in the FPGA design flow. Currently simulation is becoming one of the most
critical stages. Timing simulation is especially important when designing for advanced
FPGA devices.

Functional Simulation
While functional simulation is an important part of the verification process, it should
not be the only part. Functional simulation tests only for the functional capabilities of
the Register Transfer Level (RTL) design. It does not include any timing information,
nor does it take into consideration changes made to the original design due to
implementation and optimization

Static Timing Anal ysis and Equiv alenc y Checking
Many designers see Static Timing Analysis and Equivalency Checking as the only
analysis needed to verify that the design meets timing. There are many drawbacks to
using Static Timing Analysis and Equivalency Checking as the only timing analysis
methodology. Static analysis cannot find any of the problems that can be seen when
running a design dynamically. It can only show if the design as a whole meets setup and
hold requirements. It is generally only as good as the timing constraints applied.

In a real system, dynamic factors such as Block Ram collisions can cause timing
violations on the FPGA device. With the introduction of Dual Port Block Rams in
FPGA devices, care should be taken not to read and write to the same location at the
same time, as this results in incorrect data being read back. Static analysis is unable to
find this problem. Similarly, if there are misconstrued timespecs, static timing analysis
cannot find this problem.

In-System Testing
Most designers rely on In-System Testing as the ultimate test. If the design works on
the board, and passes the test suites, they view the device as ready for release. While
In-System Testing is definitely effective for some purposes, it may not immediately
detect all potential problems. At times the design must be run for a lengthy period
before corner-case issues become apparent. For example, issues such as timing
violations may not become apparent in the same way in all devices. By the time these
corner-case issues manifest themselves, the design may already be in the hands of the
end customer. It will mean high costs, downtime, and frustration to try to resolve the
problem. In order to properly complete In-System Testing, all hardware hurdles such
as problems with SSO, Cross-talk, and other board related issues must be overcome.
Any external interfaces must also be connected before beginning the In-System Testing,
increasing the time to market.

The traditional methods of verification are not sufficient for a fully verified system.
There are compelling reasons to do dynamic timing analysis.
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Glitc hes in Your Design
When a glitch (small pulse) occurs in an FPGA circuit or any integrated circuit, the
glitch may be passed along by the transistors and interconnect (transport) in the circuit,
or it may be swallowed and not passed (internal) to the next resource in the FPGA
device. This depends on the width of the glitch and the type of resource the glitch passes
through. To produce more accurate simulation of how signals are propagated within the
silicon, Xilinx® models this behavior in the timing simulation netlist.

VHDL Simulation
For VHDL simulation, library components are instantiated by NetGen and proper values
are annotated for pulse rejection in the simulation netlist. The result of these constructs
in the simulation netlists is a more true-to-life simulation model, and therefore a more
accurate simulation.

Verilog Simulation
For Verilog simulation, this information is passed by the PATHPULSEconstruct in the
Standard Delay Format (SDF) file. This construct is used to specify the size of pulses to
be rejected or swallowed on components in the netlist.

Debugging Timing Problems
In back-annotated (timing) simulation, the simulator processes timing information in
the Standard Delay Format (SDF) file. This may cause timing violations if the circuit is
operated too fast, or if there are asynchronous components in the design.

This section explains some common timing violations, and gives recommendtions on
how to debug and correct them.

After you run timing simulation, review any warning or error messages generated
by your simulator.

The following example is a typical setup violation message from ModelSim for a Verilog
design. Message formats vary from simulator to simulator, but all contain the same basic
information. For more information, see your simulator tool documentation.

# ** Error:/path/to/xilinx/verilog/src/simprims/X_RAMD16.v(96):
$setup(negedge WE:29138 ps, posedge CLK:29151 ps, 373 ps);
# Time:29151 ps Iteration:0 Instance: /test_bench/u1/\U1/X_RAMD16\

Setup Violation Message Line One
# ** Error:/path/to/xilinx/verilog/src/simprims/X_RAMD16.v(96):

Line One points to the line in the simulation model that is in error. In this example, the
failing line is line 96 of the Verilog file X_RAMD16.

Setup Violation Message Line Two
$setup(negedge WE:29138 ps, posedge CLK:29151 ps, 373 ps);
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Line Two gives information about the two signals that caused the error:

• The type of violation, such as $setup, $hold , or $recovery . This example is a
$setup violation.

• The name of each signal involved in the violation, followed by the simulation time
at which that signal last changed values. In this example, the failing signals are the
negative-going edge of the signalWE, which last changed at 29138 picoseconds, and
the positive-going edge of the signal CLK, which last changed at 29151 picoseconds.

• The allotted amount of time for the setup. In this example, the signal on WE should
be stable for 373 pico seconds before the clock transitions. Since WE changed only 13
pico seconds before the clock, the simulator reported a violation.

Setup Violation Message Line Three
# Time:29151 ps Iteration:0 Instance: /test_bench/u1/\U1/X_RAMD16\

Line Three gives the simulation time at which the error was reported, and the instance in
the structural design (time_sim ) in which the violation occurred.

Timing Problem Root Causes
Timing violations, such as $setuphold, occur any time data changes at a register input
(either data or clock enable) within the setup or hold time window for that particular
register. The most typical causes for timing violations are:

• Simulation Clock Does Not Meet Timespec

• Unaccounted Clock Skew

• Asynchronous Inputs, Asynchronous Clock Domains, Crossing Out-of-Phase

Simulation Clock Does Not Meet Timespec
If the frequency of the clock specified during simulation is greater than the frequency
of the clock specified in the timing constraints, this over-clocking can cause timing
violations. For example, if the simulation clock has a frequency of 5 ns, and a PERIOD
constraint is set at 10 ns, a timing violation can occur. This situation can also be
complicated by the presence of DLL or DCMin the clock path.

This problem is usually caused either by an error in the test bench or by an error in the
constraint specification. Make sure that the constraints match the conditions in the test
bench, and correct any inconsistencies. If you modify the constraints, re-run the design
through place and route to make sure that all constraints are met.

Unaccounted Clock Skew
Clock skew is the difference between the amount of time the clock signal takes to reach
the destination register, and the amount of time the clock signal takes to reach the source
register. The data must reach the destination register within a single clock period plus
or minus the amount of clock skew. While clock skew is usually not a problem when
you use global buffers, it can be a concern if you use the local routing network for your
clock signals.

To determine if clock skew is the problem, run a setup test in TRACE and read the
report. For directions on how to run a setup check, see TRACE in the Command Line Tools
User Guide (UG628). For information on using Timing Analyzer to determine clock skew,
see Timing Analyzer in the ISE® Design Suite Help.
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Async hronous Inputs, Async hronous Clock Domains, Crossing
Out-of-Phase

Timing violations can be caused by data paths that:

• Are not controlled by the simulation clock

• Are not clock controlled at all

• Cross asynchronous clock boundaries

• Have asynchronous inputs

• Cross data paths out of phase

Async hronous Clocks
If the design has two or more clock domains, any path that crosses data from one
domain to another can cause timing problems. Although data paths that cross from one
clock domain to another are not always asynchronous, it is always best to be cautious.

Always treat the following as asynchronous:

• Two clocks with unrelated frequencies

• Any clocking signal coming from off-chip

• Any time a register’s clock is gated (unless extreme caution is used)

To see if the path in question crosses asynchronous clock boundaries, check the source
code and the Timing Analysis report. If your design does not allow enough time for
the path to be properly clocked into the other domain, you may need to redesign your
clocking scheme. Consider using an asynchronous FIFO as a better way to pass data
from one clock domain to another.

Async hronous Inputs
Data paths that are not controlled by a clocked element are asynchronous inputs.
Because they are not clock controlled, they can easily violate setup and hold time
specifications.

Check the source code to see if the path in question is synchronous to the input register.
If synchronization is not possible, you can use the ASYNC_REG constraint to work
around the problem. For more information, see Using the ASYNC_REG Constraint.

Out of Phase Data Paths
Data paths can be clock controlled at the same frequency, but nevertheless can have
setup or hold violations because the clocks are out of phase. Even if the clock frequencies
are a derivative of each other, improper phase alignment could cause setup violations.

To see if the path in question crosses another path with an out of phase clock, check the
source code and the Timing Analysis report.
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Debugging Tips
When you have a timing violation, ask:

• Was the clock path analyzed by TRACE or Timing Analyzer?

• Did TRACE or Timing Analyzer report that the data path can run at speeds being
clocked in simulation?

• Is clock skew being accounted for in this path delay?

• Does subtracting the clock path delay from the data path delay still allow clocking
speeds?

• Will slowing down the clock speeds eliminate the $setup or $hold time violations?

• Does this data path cross clock boundaries (from one clock domain to another) ?
Are the clocks synchronous to each other? Is there appreciable clock skew or phase
difference between these clocks?

• If this path is an input path to the device, does changing the time at which the input
stimulus is applied eliminate the $setup or $hold time violations?

Depending on your answers, you may need to change your design or test bench
to accommodate the simulation conditions. For more information, see Design
Considerations.

Setup and Hold Violations
This section discusses Setup and Hold Violations, and includes:

• Zero Hold Time Considerations

• Negative Hold Time Considerations

• RAM Considerations

Zero Hold Time Considerations
While Xilinx® data sheets report that there are zero hold times on the internal registers
and I/O registers with the default delay and using a global clock buffer, it is still possible
to receive a $hold violation from the simulator. This $hold violation is really a $setup
violation on the register. In order to obtain an accurate representation of the CLB delays,
part of the setup time must be modeled as a hold time.

Negative Hold Time Considerations
Older Xilinx® simulation models truncate negative hold times and specify them as zero
hold times. While this truncation does not cause inaccuracies in simulation, it results in
a more pessimistic timing model than can actually be achieved in the FPGA device. This
makes it more difficult to meet stringent timing requirements.

Negative hold times are now specified in the timing models. Specifying negative
hold times provides a wider, yet more accurate, representation of the timing window.
The setup and hold parameters for the synchronous models are combined into a
single setuphold parameter. Such combining does not change the timing simulation
methodology.

There are no longer separate violation messages for setup and hold when using
Cadence NC-Verilog. They are combined into a single setuphold violation message.
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RAM Considerations
This section discusses RAM Considerations for Setup and Hold Violations, and includes:

• Timing Violations

• Collision Checking

• Hierarchy Considerations

Timing Violations
Xilinx® devices contain two types of memories:

• Block RAM

• Distributed RAM

Since block RAM and distributed RAM are synchronous elements, you must take care to
avoid timing violations. To guarantee proper data storage, the data input, address lines,
and enables, must all be stable before the clock signal arrives.

Collision Checking
Block RAMs also perform synchronous read operations. During a read cycle, the
addresses and enables must be stable before the clock signal arrives, or a timing
violation may occur.

When you use block RAM in dual-port mode, take special care to avoid memory
collisions. A memory collision occurs when:

1. One port is being written to, and

2. An attempt is made to either read or write to the other port at the same address at
the same time (or within a very short period of time thereafter)

The model warns you if a collision occurs.

If the RAM is being read on one port as it is being written to on the other port, the
model outputs an X value signifying an unknown output. If the two ports are writing
data to the same address at the same time, the model can write unknown data into
memory. Take special care to avoid this situation, as unknown results may occur. For
the hardware documentation on collision checking, see Design Considerations: Using
Block SelectRAM™Memory, in the device user guide.

You can use the generic (VHDL) or parameter (Verilog) Disabling BlockRAM Collision
Checks for Simulation to disable these checks in the model.

Hierar chy Considerations
It is possible for the top-level signals to switch correctly, keeping the setup and hold
times accounted for, while at the same time, an error is reported at the lowest level
primitive. As the signals travel down the hierarchy to the lowest level primitive, the
delays they experience can reduce the differences between them to the point that they
violate the setup time.
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To correct this problem:

1. Browse the design hierarchy, and add the signals of the instance reporting the error
to the top-level waveform. Make sure that the setup time is actually being violated
at the lower level.

2. Step back through the structural design until a link between a Register Transfer
Level (RTL) (pre-synthesis) design path and this instance reporting the error can be
determined.

3. Constrain the Register Transfer Level (RTL) path using timing constraints so that the
timing violation no longer occurs. Usually, most implemented designs have a small
percentage of unconstrained paths after timing constraints have been applied, and
these are the ones where $setup and $hold violations usually occur.

The debugging steps for $hold violations and $setup violations are identical.

Simulation Using Xilinx Suppor ted EDA Simulation Tools
For information on simulation using Xilinx® supported EDA simulation tools, see:

• Simulating Xilinx Designs in ModelSim

• Simulating Xilinx Designs in IES

• Simulating Xilinx Designs in Synopsys VCS and VCS MX
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Design Considerations
This chapter discusses practices to consider during your design.

Under standing the Architecture
When you evaluate a new FPGA architecture, you must take into account the hardware
features and the trade-offs that can be made in the architecture. Most designers of FPGA
devices describe their designs behaviorally in a Hardware Description Language (HDL)
such as VHDL or Verilog, and rely upon a synthesis tool to map to the architecture.

Keep the specific architecture in mind as you write the HDL code to ensure that the
synthesis tool maps to the hardware in the most efficient way, ensuring maximum
performance. Before you begin your design, Xilinx® recommends that you review the
device user guide and data sheet.

Slice Structure
The slice contains the basic elements for implementing both sequential and combinatorial
circuits in an FPGA device. In order to minimize area and optimize performance of a
design, it is important to know if a design is effectively using the slice features. Some
issues to consider are:

• What basic elements are contained with a slice? What are the different configurations
for each of those basic elements? For example, a look-up table (LUT) can also be
configured as a distributed RAM or a shift register.

• What are the dedicated interconnects between those basic elements? For example,
could the fanout of a LUT to multiple registers prevent optimal packing of a slice?

• What common inputs do the elements of a slice share such as control signals and
clocks that would potentially limit its packing? Using Registers with common
set/reset, clock enable, and clocks improves the packing of the design. By using
logic replication, the same reset net may have multiple unique names, and prevents
optimal register packing in a slice. Consider turning off Logic Replication for reset
nets and clock enables in the synthesis flow.

• What is the size of the LUT, and how many LUTs are required to implement certain
combinatorial functions of a design?
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IP Bloc ks
If an IP block, such as a BRAM or DSP block, appears repeatedly as the source or
destination of your critical paths, try the following:
• Use Block Features Optimally
• Evaluate the Percentage of BRAMs or DSP Blocks
• Lock Down Block Placement
• Compare IP Blocks and Slice Logic
• Use SelectRAM™ memory
• Compare Placing Logic Functions in Slice Logic or DSP Block

Use Bloc k Features Optimall y
Verify that you are using the block features to their fullest extent. In certain FPGA
architectures, these blocks contain a variety of pipeline registers that reduce the block's
setup and clock-to-out times. Typically, these internal registers have synchronous sets
and resets. Make sure that the Hardware Description Language (HDL) describes this
behavior. Gate-level schematic viewers, such as the one available in ISE® Design Suite
or Synplify Pro's HDL analyst, can be used to analyze how a synthesis tool infers an
IP block and all of its features.

Evaluate the Percenta ge of BRAMs or DSP Bloc ks
Evaluate the percentage of BRAMs or DSP blocks that you are using. Both types of
blocks are located in a limited number of columns dispersed throughout the FPGA
fabric. This results in a more limited placement, particularly when a high percentage is
used. The software can be further restricted by placement constraints for I/O or logic
interfacing to those blocks.

Lock Down Bloc k Placement
If a design is using a high percentage of BRAMs or DSP blocks which limit performance,
consider locking down their placement with location constraints. For more information,
see the Constraints Guide (UG625).

Compare IP Bloc ks and Slice Logic
Consider the trade-off between using IP blocks and slice logic. Determining whether to
use slice logic over IP blocks should mainly be done when an IP block is consistently
showing up as the source or destination of your critical path and the features of the
IP block have been used to their fullest.

Use SelectRAM Memor y
If a design has a variety of memory requirements, consider using SelectRAM memory,
composed of LUTs, in addition to BRAMs. Since SelectRAM is composed of LUTs, it has
greater placement flexibility. In the case of DSP blocks, it could potentially be beneficial
to move one of the dedicated pipeline registers to a slice register to make it easier to
place logic interfacing to the DSP blocks.

Compare Placing Logic Functions in Slice Logic or DSP Bloc k
Determine whether certain logic functions, such as adders, should be placed in the
slice logic or the DSP block. Many synthesis tools can infer DSP blocks for adders and
counters if the number of blocks inferred for more complex DSP functions does not
exceed the number of blocks in the target device. Review the synthesis report to see
where the inference of these blocks occurred.
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For Synplify Pro, use the syn_allowed_resources attribute to control the
number of blocks that the tool can infer. For more information, see the Synplify Pro
documentation. If design performance is degrading due to a high percentage of DSP
blocks, and it is difficult to place all the blocks with respect to their interface logic, the
syn_allowed_resources attribute can be helpful.

Clocking Resour ces
You must determine whether the clocking resources of the target architecture meet
design requirements. These may include:

• Number and type of clock routing resources

• Maximum allowed frequency of each of the clock routing resources

• Number of dedicated clock input pins

• Number and type of resources available for clock manipulation, such as DCMs
and PLLs

• Features and restrictions of DCMs and PLLs in terms of frequency, jitter, and
flexibility in the manipulation of clocks

For most Xilinx® FPGA architectures, the devices are divided into clock regions and
there are restrictions on the number of clock routing resources available in each of those
regions. Since the number of total clock routing resources is typically greater than the
number of clocks available to a region, many designs exceed the number of clocks
available for one particular region. When this occurs, the software must place the design
so that the clocks can be dispersed among multiple regions. This can be done only if
there are no restrictions in place that force it to place synchronous elements in a way that
violates the clock region rules.
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Evaluating Clocking Implementation
When evaluating how to implement the clocking for a design, analyze the following
before board layout:
• What clock frequencies and phase variations must be generated for a design using

either the DCM or PLL?
• Does the design use any IP blocks that require multiple clocks? If so, what types

of resources are required for these blocks. How are they placed with respect to the
device's clock regions?
For example, the Virtex®-4 device Tri-Mode Ethernet Macs can utilize five or more
global clock resources in a clock region that allows a maximum of eight global clock
resources. In these cases, Xilinx® recommends that you minimize the number of
additional I/O pins you lock to the I/O bank associated with that clock region that
would require different clocking resources.

• What are the total number of clocks required for your design? What is the loading
for each of these clock domains? What type of clock routing resource and respective
clock buffer is used?
Depending on the FPGA architecture, there can be several types of clocking
resources to utilize. For example, Virtex-5 devices have I/O, regional, and global
clock routing resources. It is important to understand how to balance each of these
routing resources, particularly in a design with a large number of clocks, to ensure
that a design does not violate the architecture's clock region rules.

• What specific I/O pins should the clocks be placed on? How can that impact
BUFG/DCM/PLL placement?
For most architectures, if a clock is coming into an I/O and going directly to a BUFG,
DCM, or PLL, the BUFG, DCM, or PLL must be on the same half of the device (top
or bottom, left or right) of the FPGA as the I/O. DCM or PLL outputs that connect to
BUFGs must have those BUFGs on the same edge of the device. Therefore, if you
place all of your clock I/O on one edge of the device, you could potentially run out
of resources on that edge, and be left with resources on another edge that can't use
dedicated high quality routing resources due to the pin placement. Local routing
may then be needed, which degrades the quality of the clock and adds unwanted
routing delay.

• With the routing resources picked, IP identified, and pin location constraints taken
into account, what is the distribution of clock resources into the different clock
regions?

Clock Repor ting
The Place and Route Report (<design_name> .par ) includes a Clock Report that
details the clocks it has detected in the design. For each clock, the report details:
• Whether the resource used was global, regional, or local
• Whether the clock buffer was locked down with a location constraint or not
• Fanout
• Maximum skew
• Maximum delay

Reviewing the Place and Route Repor t
Review the Place and Route Report to ensure that the proper resource was used for a
particular clock, and that the net skew is appropriate. For certain architectures, such as
the Spartan®-3 architecture, general interconnect, labeled as local routing in the report,
can be used for clocks if carefully planned.
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If the Place and Route Report shows that a clock is using a local routing resource, and
it was not planned for or supported in the architecture, determine if it can be put on
a dedicated clocking resource. While a clock can use a global or regional clocking
resource, if it is connected to any inputs other than clock inputs, it does not use the
dedicated clock routing resource, but uses general interconnect instead.

Instead of gating a clock, Xilinx® recommends using clock enables, or using the
BUFGMUXto select between the desired clocks.

In Virtex®-4 devices and Virtex-5 devices, if a single ended clock is placed on the N-side
of a global clock input differential pair, it does not have a direct route to the clock
resources. A local routing resource is used instead. Using this local resource increases
delay, and can degrade the quality of the clock.

Clock Region Repor ts
ISE® Design Suite features two reports:
• Global Clock Region Report
• Secondary Clock Region Report

These reports can help you determine:
• Which clock regions are exceeding the number of global or regional clock resources
• How many resources are being clocked by a specific clock in a clock region
• Which clock regions are not being used or are using a low number of clock resources
• How to resolve a clock region error and balance clocks over multiple clock regions.

If you run with timing driven packing and placement (-timing ) in map, these reports
appear in the map log file (<design_name> .map ). Otherwise, these reports appear in
the par report (<design_name> .par ).

Global Clock Region Repor t
The Global Clock Region Report is created only if your design uses more than the
maximum number of clocking resources available in a region. For example, Virtex-5
devices allow ten global clock resources in any particular clock region. Therefore, the
Global Clock Region Report appears only when you have more than ten global clocks
in your design.

The Global Clock Region Report details:
• The global clocks utilized in a specific region, and the associated number of

resources being clocked by each clock
• Location constraints for the DCMs, PLLs, and BUFGs
• Area group constraints that lock down the loads of each specific global clock to

the proper clock region

Secondar y Clock Region Repor t
The Secondary Clock Region Report details:
• The BUFIOs, BUFRs, and regional clock spines in each clock region
• The I/O and regional clock nets that are utilized in a specific region and the

associated number of resources being clocked by each clock
• Location constraints for the BUFIOs and BUFRs
• Area group constraints that lock down the loads of each specific regional clock to

the proper clock region
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The location constraints and the area group constraints are defined based on the initial
placement at the time the report was generated. This placement could change due to the
various optimizations that occur later in the flow. These constraints should be a starting
point. After analyzing the distribution of the clocks into the different clock regions,
adjust the constraints to ensure that the clock region rules are obeyed. After adjustments
to the clocks are made, the constraints can be appended to the User Constraints File
(UCF) (<design_name> .ucf ) to be used for future implementation.

Defining Timing Requirements
The ISE® Design Suite synthesis and implementation tools are driven by the
performance goals that you specify with your timing constraints. Your design must have
properly defined constraints in order to achieve:
• Accurate optimization from synthesis
• Optimal packing, placement, and routing from implementation

Your design must include all internal clock domains, input and output (IO) paths,
multicycle paths, and false paths. For more information, see the Constraints Guide
(UG625).

Over-Constraining
Although over-constraining can help you understand a design's potential maximum
performance, use it with caution. Over-constraining can cause excessive replication in
synthesis.

The auto relaxation feature in PAR automatically scales back the constraint if the
software determines that the constraint is not achievable. This reduces runtime, and
attempts to ensure the best performance for all constraints.

The timing constraints specified for synthesis should try to match the constraints
specified for implementation. Although most synthesis tools can write out timing
constraints for implementation, Xilinx® recommends that you avoid this option.
Specify your implementation constraints separately in the User Constraints File (UCF)
(<design_name.ucf> ) For a complete description of the supported timing constraints
and syntax examples, see the Constraints Guide (UG625).

Constraint Coverage
In your synthesis report, check for any replicated registers, and ensure that timing
constraints that might apply to the original register also cover the replicated registers
for implementation. To minimize implementation runtime and memory usage, write
timing constraints by grouping the maximum number of paths with the same timing
requirement first before generating a specific timespec.

Examples of Non-Consolidated Constraints
TIMESPEC "TS_firsttimespec" = FROM"flopa" TO "flopb" 10ns;
TIMESPEC "TS_secondtimespec" = FROM"flopc" TO "flopb" 10ns;
TIMESPEC "TS_thirdtimespec" = FROM"flopd" TO "flopb" 10ns;

Consolidation of Constraints Using Grouping
INST "flopa" TNM = "flopgroup";
INST "flopc" TNM = "flopgroup";
INST "flopd" TNM = "flopgroup";
TIMESPEC "TS_consolidated" = FROM"flopgroup" TO "flopb" 10ns;
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Driving Synthesis
To create high-performance circuits, Xilinx® recommends that you:

• Use Proper Coding Techniques

• Analyze Inference of Logic

• Provide a Complete Picture of Your Design

• Use Optimal Software Settings

Use Proper Coding Techniques
Proper coding techniques ensure that the inferences of your behavioral Hardware
Description Language (HDL) code made by the synthesis tool maximize the architectural
features of the device. The Language Templates in ISE® Design Suite contain coding
examples in both Verilog and VHDL.

Anal yze Inference of Logic
Check to see that the design is maximizing the features of the block, and that the
synthesis tool is properly inferring the expected features from your HDL code. Gate level
schematic viewers, such as HDL Analyst in Synplify Pro, can help with your analysis.
When using BRAMs, use the dedicated output pipeline registers when possible in order
to reduce the clock-to-out delay of data leaving the RAM. The DSP blocks also have a
variety of pipeline registers that reduce the setup and clock-to-out timing of these blocks.

Provide a Complete Picture of Your Design
Make sure that the synthesis tool has a complete picture of your design:

• If a design contains IP generated by the CORE Generator™ software, third party IP,
or any other lower level blackboxed netlists, include those netlists in the synthesis
project. Although the synthesis tool cannot optimize logic within the netlist, it can
better optimize the HDL code that interfaces to these lower level netlists.

• The tool must understand the performance goals of a design using the timing
constraints that you supplied. If there are critical paths in your implementation that
are not seen as critical in synthesis, use the -route constraint from Synplify Pro
to force synthesis to focus on that path.

Use Optimal Software Settings
You can modify a variety of software settings in synthesis to achieve optimal design.
Xilinx recommends that you begin with a baseline set of software options, then
incrementally add new switches to understand their effects. A variety of attribute
settings can affect logic inference and synthesis optimization. Changing these attribute
settings can affect synthesis with out having to re-code. See Helpful Synthesis Attributes.
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Helpful Synthesis Attrib utes
Xilinx Synthesis Technology
(XST) Synplify Pro

Fanout control MAX_FANOUT syn_maxfan

Directs inference of RAMs to
BRAMs or SelectRAM™

RAM_STYLE syn_ramstyle

Directs usage of DSP48 USE_DSP48 syn_multstyle
syn_dspstyle

Directs usage of SRL16 SHREG_EXTRACT syn_srlstyle

Controls percent of Block
RAMs utilized

N/A syn_allowed_resources

Preservation of Register
Instances During
Optimizations

KEEP syn_preserve

Preservation of wires KEEP syn_keep

Preservation of black boxes
with unused outputs

KEEP syn_noprune

Controls clock enable function
in flip flops

USE_CLOCK_ENABLE N/A

Controls synchronous sets USE_SYNC_SET N/A

Controls synchronous resets USE_SYNC_RESET N/A

For a complete listing of attributes and their functionality, see your synthesis tool
documentation. For more information about XST constraints, see the XST User Guide for
Virtex-4, Virtex-5, Spartan-3, and Newer CPLD Devices (UG627) and the XST User Guide for
Virtex-6, Spartan-6, and 7 Series Devices (UG687).

Additional Timing Options
Although timing performance might be enhanced, options that lead to the replication
of logic, such as re-timing in Synplify Pro and register balancing in Xilinx Synthesis
Technology (XST), can impact area.

To reduce high fanout nets, use fanout attributes specifically on that net, instead of
globally specifying a maximum fanout limit.

If hierarchical boundaries are maintained, make sure that ports are registered at the
hierarchical boundaries. If critical paths cross over these hierarchical boundaries, the
synthesis tool does not allow certain optimizations. Any physical synthesis options used
in the implementation tools are also limited in optimizing those paths if hierarchy is
maintained. This can lead both to lower performance and higher area utilization.

Another option is to set KEEP_HIERARCHYto soft in order to:

• Maintain hierarchy for synthesis

• Make it easier to perform post-synthesis simulation

• Allow the physical synthesis options of MAPto optimize across hierarchical
boundaries

For more information about KEEP_HIERARCHY, see the Constraints Guide (UG625).
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Before you begin implementation:
• Review the warnings in your synthesis report.
• Check the RTL schematic view to see how the synthesis tool is interpreting the

Hardware Description Language (HDL) code. Use the technology schematic to
understand how the HDL code is mapping to the target architecture.

Choosing Implementation Options
The best options to use to achieve maximum performance may depend on the following
design parameters:
• Performance goals
• Synthesis flow
• Overall structure

Performance Evaluation Mode
If you have not specified any timing constraints, use Performance Evaluation Mode to
get a quick idea of design performance. ISE® Design Suite automatically generates
timing constraints for each internal clock for the implementation tool only. To
automatically invoke Performance Evaluation Mode, do not specify a User Constraints
File (UCF). Performance Evaluation Mode enables you to obtain high performance
results from the implementation tool without specifying timing goals.

Packing and Placement Option
Try the timing driven packing and placement option (map -timing) in MAPfor all
architectures that support it. Whenmap -timing is enabled, MAPdoes both the packing
and placement, while PARdoes only the routing. By tightly integrating packing and
placement, and having both processes understand the timing information, the software
can take better advantage of the hardware and provide better performance.

For Virtex®-5 devices, timing driven packing and placement is the only way to run MAP.
Because of the added complexity of the Virtex-5 device slice structure, you can achieve
efficient packing only by using this strategy. For best performance, Xilinx® recommends
that you run MAPand PARwith their effort levels set to High . While runtime is longer
compared to standard effort level, you achieve better initial results.

Physical Synthesis Options
Physical synthesis options in implementation can re-optimize and pack logic based on
knowledge of the critical paths of a design, leading to better placement and routing. The
physical synthesis options are implemented during MAP. They include:
• Global netlist optimization
• Localized logic optimization
• Retiming
• Register duplication
• Equivalent register removal

For more information, see Xilinx® White Paper 230, Physical Synthesis and Optimization
with ISE® These physical synthesis options provide the greatest benefit to designs that
do not follow the guidelines for synthesis outlined in the previous paragraph. Physical
synthesis can lead to increased area due to replication of logic.
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Smar tXplorer
Use the SmartXplorer Timing Closure Mode implementation option to achieve
maximum design performance.

It is usually best to run SmartXplorer over the weekend since it typically runs more
than a single iteration of MAPand PAR. Once SmartXplorer has selected the optimal
tools settings, continue to use this setting for subsequent design runs. If you have
made many design changes since the original SmartXplorer run, and your design is no
longer meeting timing with the options determined by SmartXplorer, consider running
SmartXplorer again.

Timing Closure Mode
You can access Timing Closure mode from the ISE® Design Suite or the command
line. Timing Closure mode evaluates your timing constraints, then tries different sets
of implementation options to achieve your timing goals. Although initial runtime can
be longer because of the need to run multiple implementations, once you have the
optimal set of options, you may reduce the number of design iterations necessary to
achieve timing closure.

Evaluating Critical Paths
By understanding the characteristics of your critical path, you can make better decisions
for the next design iteration. A data path is comprised of both logic and interconnect
delay. Individual component delays that make up logic delay are fixed. Logic delay
can be reduced only if the number of logic levels are reduced, or if the structure of
the logic is changed. In comparison, interconnect delay is much more variable, and is
dependent on the placement of the logic.

Many Logic Levels
When your design has excessive logic levels that lead to many routing interconnects:
• Evaluate using the physical synthesis options in MAP.
• Verify that the critical paths reported in implementation match those reported in

synthesis. If they do not, use constraints such as -route from Synplify Pro to focus
the synthesis tool on these paths.

• Review your Hardware Description Language (HDL) code to ensure that it is taking
the best advantage of the hardware.

• Make sure inferencing is occurring properly, particularly for IP blocks.

Few Logic Levels
If there are few logic levels, but certain data paths do not meet your performance
requirements:
• Evaluate fan out on routes with long delay.
• If the critical path's destination is the clock enable or synchronous set/reset input of

a flop, try implementing the SR/CE logic using the sourcing LUT.
Xilinx Synthesis Technology (XST) has attributes that can be applied globally or
locally to disable the inference of registers with synchronous sets or resets or clock
enables. Instead they infer the synchronous set or reset or clock enable function on
the data input of the flip flop. This may allow better packing of LUTs and FFs into
the same slice. This can be especially useful for Virtex®-5 devices where there are
four registers in each slice, and each must use the same control logic pins.
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• If a critical path contains IP blocks such as Block RAMs or DSP48s, check that the
design is taking full advantage of the embedded registers. Understand when to
make the trade-off between using these blocks versus using slice logic.

• Do a placement analysis. If logic appears to be placed far apart from each other,
floorplanning of critical blocks may be required. Try to floorplan only the logic
that is required to meet the timing objectives. Over floorplanning can cause worse
performance.

• Evaluate clock path skew. If the clock skew appears to be larger than expected,
load the design in FPGA Editor and verify that all clock resources are routed on
dedicated clocking resources. If they are not, this could lead to large clock skew.

Smar tGuide Technology
Use SmartGuide™ Technology to preserve the unchanged portions of a design.

Smar tGuide Technology
Feature/Function Smar tGuide Technology
Re-uses a previous implementation Yes

Unchanged modules are guaranteed the same
implementation

No

Require design planning No

Runtime reduction For both Placer and Router

Ease of use Easy

When to Use Smar tGuide Technology
Use SmartGuide™ Technology when:
• A design is finished and meets timing, but you are making small design changes

and want to reduce runtime.
• A design is finished and meets timing, but you need to change an attribute or move

a pin location.

Smar tGuide Technology
SmartGuide™ Technology instructs implementation tools to use results from a previous
implementation to guide the current one, based on a placed and routed Native Circuit
Description (NCD) file. SmartGuide Technology can help achieve consistency of results
while also improving runtime.

SmartGuide Technology can be enabled in:
• ISE® Design Suite
• TCL
• The command line

For more information on how to enable SmartGuide Technology , see:
• ISE Help
• Command Line Tools User Guide (UG628)
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Optimal Chang es for Smar tGuide Technology
SmartGuide Technology is most useful for small logic changes, such as modifying a
logic equation. Since large changes (such as adding new modules and instances) affect
the design hierarchy, they reduce the probability of successfully matching components
from a previous implementation.

The changes that work well with SmartGuide Technology are:

• A small logic change (less than 10 percent) in one or two modules

• Moving a pin location

• Changing an attribute on a component

• Changing a timing constraint

The options specified in MAP and PAR for the current implementation should match
the options specified for the previous implementation used to generate the guide file.
This ensures that similar algorithms and optimizations are run between both runs,
ensuring the best match.

Changing both timing and placement constraints can impact the results of SmartGuide
Technology . If you are changing many constraints, Xilinx® recommends that you allow
the tools to run without SmartGuide Technology , then use the output of the initial run
with the changed constraints as your guide file for subsequent runs.

Constraint Chang es That Impact Smar tGuide Technology
The following constraint changes can impact the results of SmartGuide Technology:

• Moving a pin location

Moving a pin location typically works well. Only the changed pin and net are
re-routed. Difficulties may occur if the pin is moved to a congested area and requires
moving nets in order to route the net that connects to the changed pin. This can
cause a ripple affect in order to route the design and meet timing.

• Moving a component

Moving a component is similar to moving a pin location. Moving a component can
be beneficial if it helps with timing; but it can be deleterious if the new component
is moved to a congested area.

• Relaxing a timing constraint

Relaxing a timing constraint can greatly help SmartGuide Technology if a failing
path now meets timing. SmartGuide Technology always tries to meet timing
regardless whether the logic has changed or not. For this reason, Xilinx recommends
using SmartGuide Technology only on designs that meet timing.

• Tightening a timing constraint

Xilinx does not recommend tightening a timing constraint. If the change in
constraints now causes a path to fail, SmartGuide Technology re-implements that
path and any other logic in order to route and meet timing

Reimplementing Without Smar tGuide Technology
After about ten guided implementations, Xilinx recommends that you reimplement
without using SmartGuide Technology in order to fully optimize the entire design.
Reimplementing without SmartGuide Technology allows optimizations between logic
that had previously been guided by SmartGuide Technology, and logic that is new or
modified.
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Appendix A

Simulating Xilinx Designs with
ModelSim

This Appendix discusses Simulating Xilinx® Designs in ModelSim, and includes details
on Simulating Xilinx Designs in ModelSim and Simulating SecureIP with ModelSim
and Questa Sim.

Simulating Xilinx Designs in ModelSim
Before beginning functional simulation, you must use Compxlib to compile the Xilinx®
Simulation Libraries for the target simulator. For more information, see the Command
Line Tools User Guide (UG628).

Running Simulation from ISE Design Suite (VHDL or Verilog)
ISE® Design Suite automatically creates the commands needed to run the simulation.
1. Select the Simulation radio button in the View pane, choose the simulation to run

from the drop-down list.
2. Select the Testbench in the Hierarchy pane.
3. Run the Simulate <respective> Model process in the Processes pane.

Running Functional Simulation in ModelSim (Standalone)
This section includes:
• Running Functional Simulation in ModelSim Standalone (Verilog)
• Running Functional Simulation in ModelSim Standalone (VHDL)

Running Functional Simulation in ModelSim Standalone (VHDL)
To run functional simulation in ModelSim standalone (VHDL):
1. Compile the following:

a. source files
b. testbench

For example:
vcom -93 <source1>.vhd <source2>.vhd ... testbench.vhd

2. Load the design:
vsim -t 1ps work.<testbench>
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Running Functional Simulation in ModelSim Standalone (Verilog)
To run functional simulation in ModelSim standalone (Verilog):

1. Compile the following:

a. glbl.v module

b. source files

c. testbench

For example:

vlog $env(XILINX)/verilog/src/glbl.v <source1>.v <source2).v ... <testbench>.v

For more information about the glbl.v module, see Global Reset and Tristate
for Simulation.

2. Load the design in ModelSim.

a. Use the -L switch to point to the libraries used in the design

b. Load the glbl.v module

For example:

vsim -t ps -L unisims_ver -L xilinxcorelib_ver work.<testbench> work.glbl

The glbl.v automatically pulses Global Set/Reset (GSR) for the first 100 ns of the
simulation.

Running Back Annotated Simulation in ModelSim (Standalone)
This section discusses Running Back Annotated Simulation in ModelSim (Standalone),
and includes:

• Running Back Annotated Simulation in ModelSim Standalone (VHDL)

• Running Back Annotated Simulation in ModelSim Standalone (Verilog)
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Running Back Annotated Simulation in ModelSim Standalone (VHDL)
To run back annotated simulation in ModelSim Standalone (VHDL):

1. Create the Simulation Model.

a. To create the simulation model using ISE Design Suite:

Under each stage in the Implement Design process, there is a Generate
Simulation Model Process. For instance, under the Place and Route process is
the Generate Post-Place and Route Simulation Model. This runs NetGen to
generate a simulation model and an SDF file with the timing information. The
default name of the model and the SDF file are <design_name>_timesim.vhd
and <design_name>_timesim.sdf . Right-click the Simulate Process to
change the properties for generating the model. Click Help for a description
of each property.

b. To create the simulation model using the command line:

NetGen is the executable that creates simulation models. For more information,
see the Command Line Tools User Guide (UG628).

2. Compile the following:

a. generated simulation model

b. testbench

For example:

vcom -93 <design_name>_timesim.vhd testbench.vhd

3. Load the design, including the Standard Delay Format (SDF) file.

For example:

vsim -t ps -sdfmax /UUT=<design_name>_timesim.sdf work.testbench

You must supply ModelSim with the following information:

• The region where the SDF file should be applied. The region tells ModelSim where
the timing simulation netlist generated by the Xilinx® tools is instantiated. Assume
that the entity name in your testbench is TESTBENCHand the simulation netlist is
instantiated inside the testbench with an instance name of UUT. The region for this
example would be /TESTBENCH/UUT.

• The location of the SDF file. If the SDF file is located in the same directory as the
simulation netlist, you need to supply only the name of the SDF file. Otherwise, you
must specify the entire path to the SDF file.

Following is an example of the VSIM command line:

vsim -t ps -sdfmax /testbench/uut=c:/project/sim/time_sim.sdf work.testbench
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Running Back Annotated Simulation in ModelSim Standalone (Verilog)
To run back annotated simulation in ModelSim Standalone (Verilog):

1. Create the Simulation Model.

a. To create the simulation model using ISE® Design Suite:

Under each stage in the Implement Design process, there is a Generate
Simulation Model Process. For instance, under the Place and Route process is
the Generate Place and Route Simulation Model. This runs NetGen to generate
a simulation model and an SDF file with the timing information. The default
name of the model and the SDF file are <design_name>_timesim.v and
<design_name>_timesim.sdf . Right-click the Simulate Process to change
the properties for generating the model. Click Help for a description of each
property.

b. To create the simulation model using the command line:

NetGen is the executable that creates simulation models. For more information,
see the Command Line Tools User Guide (UG628).

2. Load the design in ModelSim.

a. Use the -L switch to point to the Verilog SIMPRIM models that define the
behavior of the components in the simulation model.

b. Load the glbl module.

For example:

vsim -t ps -L simprims_ver work.<testbench> work.glbl

For Verilog, the timing simulation netlist has a $sdf_annotate statement that calls
the SDF file. Therefore the SDF file is automatically pulled in when loading the
simulation. The glbl.v automatically pulses Global Set/Reset (GSR) for the first 100 ns
of the simulation.

Simulating SecureIP with ModelSim and Questa Sim
This section discusses Simulating SecureIP with ModelSim and Questa Sim. For more
information about SecureIP, see Encryption Methodology Used for SecureIP Models.

Since SecureIP is a Verilog standard, ModelSim and Questa Sim require a Verilog license.
If you do not have a Verilog license, see How do I run simulation with Xilinx SecureIP in
ModelSim without a Verilog license? (Xilinx Answer Record 33118).

Use Compxlib to compile Xilinx® libraries (including SecureIP libraries). For more
information, see the Command Line Tools User Guide (UG628).

Compxlib sets up the libraries automatically. The modelsim.ini file is edited
accordingly. Once the libraries are compiled using Compxlib, no additional changes
needed to modelsim.ini are required.

The only additional switch needed to run ModelSim simulation after compiling Xilinx
libraries is the -L switch that points to the SecureIP library.

vsim -t ps -L secureip -L simprims_ver work.< testbench >
work.glbl

For help with SecureIP simulation, open a WebCase with Xilinx Technical Support at
http://www.xilinx.com/support.
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Simulating Xilinx Designs in IES
This Appendix discusses Simulating Xilinx® Designs in Incisive Enterprise Simulator
(IES). This Appendix includes details on running simulation from the ISE® Design
Suite, in NC-Verilog, and in NC-VHDL.

Running Simulation from ISE Design Suite
IES is not integrated with ISE® Design Suite.

Running Simulation in NC-Verilog
This section discusses Running Simulation in NC-Verilog, and includes:

• Running Simulations in NC-Verilog (Method One)

• Running Simulations in NC-Verilog (Method Two)

• Simulating SecureIP with NC-Verilog

Running Simulations in NC-Verilog (Method One)
Running Simulations in NC-Verilog (Method One) uses library source files with compile
time options (similar to Verilog-XL). Depending on the makeup of your design (for
example, Xilinx® instantiated primitives, CORE Generator™ software components) for
RTL simulation, specify the following at the command line:

irun -y $XILINX/verilog/src/unisims -y
$XILINX/verilog/src/XilinxCoreLib \
+incdir+$XILINX/verilog/src +libext+.v $XILINX/verilog/src/glbl.v \
<testfixture>.v <design>.v

The $XILINX/verilog/src/unisims area contains the Unified Library components
for RTL simulation. The $XILINX/verilog/src/simprims area contains generic
simulation primitives.

For timing simulation and post-map simulation, or for post-translate simulation, the
SIMPRIM based libraries are used. Specify the following at the command line:

irun -y $XILINX/verilog/src/simprims $XILINX/verilog/src/glbl.v
\+libext+.v <testfixture>.v <design>.v

For more information about annotating Standard Delay Format (SDF) files, see
Back-Annotating Delay Values from SDF File.
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Running Simulations in Cadence NC-Verilog (Method Two)
Method Two uses shared pre-compiled libraries. Before beginning simulation for this
method, you must compile the Xilinx® Simulation Libraries for the target simulator.
Xilinx provides a tool called Compxlib for this purpose. For more information, see the
Command Line Tools User Guide (UG628).

Depending on the makeup of the design (for example, Xilinx instantiated primitives,
CORE Generator™ software) for RTL simulation, edit the hdl.var and cds.lib to
specify the library mapping as shown in the following examples.

CDS.LIB Example
# cds.lib DEFINE worklib worklib

HDL.VAR Example
# hdl.var DEFINE LIB_MAP ($LIB_MAP, + => worklib)

After setting up the libraries, compile and simulate the design:

ncvlog -messages -update $XILINX/verilog/src/glbl.v <testfixture>.v <design>.v
ncelab -messages <testfixture_name> glbl
ies -messages <testfixture_name>

The -update option of NCVlog enables incremental compilation.

Back-Annotating Delay Values from Standar d Delay Format (SDF) File
The NC-Verilog simulator reads compiled Standard Delay Format (SDF) files only. The
SDF source file is supplied as an argument in a $sdf_annotate task by NetGen. For
more information on NetGen, see the Command Line Tools User Guide (UG628).

SDF files must be with NCSDFC to annotate the timing information contained in the
SDF file:

ncsdfc sdf_filename.sdf

NCSDFC creates a file called sdf_filename.sdf.X . If a compiled file exists, NCSDFC
checks to make sure that the date of the compiled file is newer than the date of the source
file and that the version of the compiled file matches the version of NCSDFC. If either
check fails, the SDF file is recompiled. Otherwise, the compiled file is read.

For Back Annotated simulation, the SIMPRIM based libraries (except for Post Synthesis)
are used. Specify the following at the command line:

ncvlog -messages -update $XILINX/verilog/src/glbl.v <testfixture>.v time_sim.v
ncelab -messages -autosdf <testfixture_name> glbl
ies -messages <testfixture_name>

Simulating SecureIP with NC-Verilog
This section discusses Simulating SecureIP with NC-Verilog. For more information
about SecureIP, see Encryption Methodology Used for SecureIP Models.

Starting with Release 11.1, all IP blocks are encrypted using SecureIP. For the supported
versions of IES, see Xilinx Supported Simulators and Operating Systems.
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Multi-Step Process with Precompiled Libraries
1. Run Compxlib to compile Xilinx® libraries (including SecureIP libraries).

Compxlib compiles all the libraries and updates CDS.lib and HDL.var files with
the library mappings.
For more information about Compxlib, see the Command Line Tools User Guide
(UG628).

2. Run ncvlog , ncelab and IES .
The simulator automatically references the SecureIP libraries based on the mappings
in the CDS.lib and HDL.var files. There are no extra switches or special ENV
settings required.

Single Step Process
In the single step process, you do not have to run Compxlib to compile Xilinx libraries.
Only one additional switch is required.

-f $XILINX/secureip/ncsim/ies_secureip_cell.list.f

Example
irun \
design>.v testbench>.v \
${Xilinx}/verilog/src/glbl.v \
-f $XILINX/secureip/ncsim/ies_secureip_cell.list.f \ \b>
-y ${Xilinx}/verilog/src/unisims +libext+.v \
-y ${Xilinx}/verilog/src/simprims +libext+.v \
+access+r+w

The table below lists special considerations that need to be arranged with your simulator
vendor for using these libraries.

Special Considerations for Using SecureIP Libraries
Simulator Name Vendor Special Requirements
ModelSim SE

ModelSim PE

ModelSim DE

Questa Sim

Mentor
Graphics

If design entry is in VHDL, a mixed language license
or a SecureIP OP is required. Please contact the vendor
for more information.

IUS Cadence An export control regulation license is required.

VCS Synopsys The usage of –lca switch with the VCS commands are
required when simulating designs with SecureIP in them

For help with SecureIP simulation, open a WebCase with Xilinx Technical Support at
http://www.xilinx.com/support.

Running Simulation in NC-VHDL
Before beginning simulation, you must use Compxlib to compile the Xilinx® Simulation
Libraries for the target simulator. For more information, see the Command Line Tools
User Guide.
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Depending on the makeup of the design (for example, Xilinx instantiated primitives,
or the CORE Generator™ software for Register Transfer Level (RTL) simulation), edit
hdl.var and cds.lib to specify the library mapping as shown in the following
examples.

CDS.LIB Example
# cds.lib DEFINE worklib worklib

HDL.VAR Example
# hdl.var DEFINE LIB_MAP ($LIB_MAP, + => worklib)

Running Behavioral Simulation With NC-VHDL
After setting up the libraries, compile and simulate the design as follows:

ncvhdl <testbench>.vhd <design_name>.vhd ncelab -lib_binding -vhdl_time_precision 1ps -work worklib
-cdslib cds.lib -access +wc worklib.testbench:behavior ies -extassertmsg -gui -cdslib cds.lib
worklib.<testbench>:<architecture_name>

Running Timing Simulation With Cadence NC-VHDL
For timing simulation, you must compile the Standard Delay Format (SDF) file and
then add it to the ncelab line.

To compile the SDF, run the command:

ncsdfc <name_sdf_file>

This command writes out a <name_sdf_file> .X file, which is a compiled SDF file. If
a compiled file exists, NCSDFC checks to make sure that the date of the compiled file is
newer than the date of the source file and that the version of the compiled file matches
the version of NCSDFC.

In the NC-Elab stage, the switch -SDF_CMD_FILE <file_name> expects a command file
for the SDF file as in the following example:

// SDF command file sdf_cmd1 COMPILED_SDF_FILE = "dcmt_timesim_vhd.sdf.X", SCOPE= :uut,
MTM_CONTROL= "MAXIMUM", SCALE_FACTORS= "1.0:1.0:1.0", SCALE_TYPE= "FROM_MTM"; // END OF FILE: sdf_cmd

Once the SDF is annotated correctly, change NC-Elab to the following:
ncelab -vhdl_time_precision 1ps -work worklib -cdslib cds.lib -SDF_CMD_FILE <file_name> -access
+wc worklib.<testbench>:<architecture_name>

If you are using IUS5.5 or higher, run the following command:

ncelab -lib_binding -vhdl_time_precision 1ps -work worklib -cdslib cds.lib
-SDF_CMD_FILE <file_name> -access +wc worklib.<testbench>:<architecture_name>
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Simulating Xilinx Designs with
Synopsys VCS and VCS MX

This Appendix discusses Simulating Xilinx® Designs in Synopsys VCS and VCS MX.

Simulating Xilinx® Designs from ISE Design Suite in Synopsys
VCS and VCS MX

Synopsys VCS and VCS MX are not integrated with ISE® Design Suite.

Simulating Xilinx Designs in Standalone Synopsys VCS and VCS
MX

This section discusses Simulating Xilinx® Designs in Standalone Synopsys VCS and
VCS MX, and includes:

• Using Library Source Files With Compile Time Options

• Using Shared Pre-Compiled Libraries

• Using Unified Usage Model (Three-Step Process)

Using Librar y Sour ce Files With Compile Time Options
Depending upon the makeup of the design (Xilinx® instantiated primitives or CORE
Generator™ software components), for Register Transfer Level (RTL) simulation, specify
the following at the command line:

vcs -y $XILINX/verilog/src/unisims -y $XILINX/verilog/src/xilinxcorelib \
+incdir+$XILINX/verilog/src +libext+.v $XILINX/verilog/src/glbl.v \
-Mupdate -R <testfixture>.v <design>.v

For timing simulation, the SIMPRIM based libraries are used. Specify the following at
the command line:

vcs +compsdf -y $XILINX/verilog/src/simprims $XILINX/verilog/src/glbl.v \
+libext+.v -Mupdate -R <testfixture>.v time_sim.v

For information on back-annotating the Standard Delay Format (SDF) file for timing
simulation, see Using Standard Delay Format (SDF) with VCS.

The -R option automatically simulates the executable after compilation.
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The -Mupdate option enables incremental compilation. Modules may be recompiled
for one of the following reasons:

• The target of a hierarchical reference has changed.

• A compile time constant, such as a parameter, has changed.

• The ports of a module instantiated in the module have changed.

• Module inlining. For example, the merging internally in VCS of a group of module
definitions into a larger module definition that leads to faster simulation. These
affected modules are again recompiled. This is performed only once.

Using Shared Pre-Compiled Libraries
Before beginning functional simulation, use Compxlib to compile the Xilinx® Simulation
Libraries for the target simulator. For more information, see the Command Line Tools
User Guide (UG628).

Depending upon the makeup of the design (Xilinx instantiated primitives or CORE
Generator™ software components), for Register Transfer Level (RTL) simulation, specify
the following at the command-line:

vcs -Mupdate -Mlib=<compiled_dir>/unisims_ver -y $XILINX/verilog/src/unisims \
-Mlib=<compiled_dir>/xilinxcorelib_ver - +incdir+$XILINX/verilog/src \
+libext+.v $XILINX/verilog/src/glbl.v -R <testfixture>.v <design>.v

For timing simulation or post-NGD2VER, the SIMPRIM based libraries are used. Specify
the following at the command-line:

vcs +compsdf -Mupdate -Mlib=<compiled_lib_dir>/simprims_ver \
-y $XILINX/verilog/src/simprims $XILINX/verilog/src/glbl.v +libext+.v \
-R <testfixture>.v time_sim.v

For information on back-annotating the Standard Delay Format (SDF) file for timing
simulation, see Using Standard Delay Format (SDF) with VCS.

The -R option automatically simulates the executable after compilation.

The -Mlib=<compiled_lib_dir> option provides VCS with a central place to look for the
descriptor information before it compiles a module and a central place to obtain the
object files when it links the executables together.

The -Mupdate option enables incremental compilation. Modules may be recompiled
for one of the following reasons:

• The target of a hierarchical reference has changed.

• A compile time constant such as a parameter has changed.

• The ports of a module instantiated in the module have changed.

• Module inlining. For example, merging internally in VCS a group of module
definitions into a larger module definition leads to faster simulation. These affected
modules are again recompiled. This is performed only once.

Using Unified Usage Model (Three-Step Process)
The three-step process consists of the following phases:

• Analysis

• Elaboration

• Simulation
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Three-Step Process Anal ysis Phase
The three-step process analysis phase consists of:
• vlogan [vlogan_options] file2.v file3.v file4.v

Analyze all Verilog files except the top-level Verilog file.
• vhdlan [vhdlan_options] file5.vhd file6.vhd

Analyze the VHDL bottom-most entity first, then move up in order.

Three-Step Process Elaboration Phase
The three-step process elaboration phase consists of:

vcs [vcs_options] entity

Three-Step Process Simulation Phase
The three-step process simulation phase consists of:

simv [simv_options]

For more information, see the VCS User Guide, located in your VCS install directory at
VCS_HOME/doc/UserGuide/vcsmx_ug_uum.pdf .

Using Standar d Delay Format (SDF) with VCS
There are two methods for back annotating delay values from an Standard Delay
Format (SDF) file:
• Compiling the Standard Delay Format (SDF) file at Compile Time
• Reading the ASCII Standard Delay Format (SDF) File at Runtime

Compiling the Standar d Delay Format (SDF) file at Compile Time
To compile the Standard Delay Format (SDF) file at compile time, run the +compsdf
option as follows:

vcsi -R -f options.f +compsdf

VCS defaults to an SDF file that has the same name as the top-level simulation netlist. To
use a different SDF file, specify the SDF file name after the +compsdf option. No table
files are required on the command line. VCS automatically determines the required
capabilities.

Reading the ASCII Standar d Delay Format (SDF) File at Runtime
To read the ASCII Standard Delay Format (SDF) file at runtime, you must provide a
table file with the -P option as follows:
1. Create a PLI table file (sdf.tab ) that maps the $sdf_annotate system task to

the C function sdf_annotate_call .
2. Use the -P option to specify this file as follows:

vcs -P sdf.tab -y $XILINX/verilog/src/simprims +libext+.v
time_sim.v

Following is an example of an entry in the sdf.tab file:

$sdf_annotate call=sdf_ annotate_ call acc+=tchk, mp, mipb:%CELL+
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Simulating SecureIP with VCS
This section discusses Simulating SecureIP with VCS, and includes:

• About Simulating SecureIP with VCS

• Using Library Source Files With Compile Time Options

• Using SIMPRIM-Based Libraries for Timing Simulation

About Simulating SecureIP with VCS
Starting with ISE® Design Suite Release 11.1, all IP blocks are encrypted using SecureIP.
For the supported versions of VCS, see Xilinx Supported Simulators and Operating
Systems.

For more information about SecureIP, see Encryption Methodology Used for SecureIP
Models.

Using Librar y Sour ce Files With Compile Time Options
Depending upon the makeup of the design (Xilinx® instantiated primitives or CORE
Generator™ software components), for Register Transfer Level (RTL) simulation, specify
the following at the command line:

vcs -f $XILINX/secureip/vcs/vcs_secureip_cell.list.f \
-y $XILINX/verilog/src/unisims -y $XILINX/verilog/src/xilinxcorelib \
+incdir+$XILINX/verilog/src +libext+.v $XILINX/verilog/src/glbl.v \
-Mupdate -R <testfixture>.v <design>.v

SecureIP libraries can be used at compile time by leveraging the -f switch in the
simulator.

Using SIMPRIM-Based Libraries for Timing Simulation
The SIMPRIM based libraries are used for timing simulation. Specify the following at
the command line:

vcs +compsdf -y $XILINX/verilog/src/simprims $XILINX/verilog/src/glbl.v \
-f $XILINX/secureip/vcs/vcs_secureip_cell.list.f \
+libext+.v -Mupdate -R <testfixture>.v time_sim.v

If you are using the SystemVerilog switch with SecureIP, see Xilinx Answer Record
32821).

For help with SecureIP simulation, open a WebCase with Xilinx® Technical Support at
http://www.xilinx.com/support.
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Appendix D

Additional Resources
• Xilinx Glossary - http://www.xilinx.com/company/terms.htm

• Xilinx Support and Documentation - http://www.xilinx.com/support
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