
Winter 2022-2023 initials: CSSE 232

CSSE 232 – Computer Architecture I
Rose-Hulman Institute of Technology

Computer Science and Software Engineering Department

Exam 1

Name: Section: 1 2 3 4 5

This exam is closed book. You are allowed to use the reference card from the book
and one 8.5” × 11” single sided page of hand written notes. You may not use a computer,
phone, etc. during the examination.

You may use a calculator on this exam.
Write all answers on these pages. Be sure to show all work and document your code.

Do not use instructions that we have not covered (e.g. no mul or div but you can use
instructions like slli, srl, etc).

RISC-V code is judged both by its correctness and its efficiency. Unless otherwise stated,
you may not use RISC-V pseudoinstructions when writing RISC-V code.

For Pass/Fail problems there will be a redo opportunity for partial credit on a future
date. You must submit a good faith effort to qualify for the redo opportunity.

Question Points Score

Problem 1 20

Problem 2 15

Problem 3 20

Problem 4 25

Problem 5 15

Total: 95

December 13, 2022 page i of 11

Winter 2022-2023 initials: CSSE 232

Problem 1. Consider the following RISC-V assembly code snippet disassembled from the
xv6 operating system, with partial machine language translations to the right. Note
that the translation is in decimal unless specified otherwise.

0x0040 0000 Loop: bge a1, a0, L8 [___]

0x0040 0004 addi s1, a1, 8

0x0040 0008 srai s1, a5, 12

0x0040 000c addi a1, a1, 16

0x0040 0010 jal x0, Loop [___]

0x0040 0014 L8: add a1, a1, x0

0x0040 0018 jalr x0, 0(ra)

012345678910111213141516171819202122232425262728293031

0 5 0

8 11 0 9 0x13

15 9

1 -1 0

0 11

0x67

Solution:

012345678910111213141516171819202122232425262728293031

0 0 10 11 5 10 0 0x63

8 11 0 9 0x13

0x40C 15 5 9 0x13

16 11 0 11 0x13

1 0x3F8 1 -1 0 0x6F

0x00 0 11 0 11 0x33

0 1 0 0 0x67

(a) (12 points) Fill in the 24 missing values in the instructions above. You may write
in decimal or in hex, but must clearly indicate if it is in hex. Write any immediates
for UJ and SB instructions in base 10 between the square brackets before filling the
table. Do not use binary in the table.

(b) (5 points) Consider the following assembled branch instruction. Assuming this in-
struction is at address 0x0040 0020, what address will the branch go to when it is
taken? Show your work.

1 111111 00110 00101 000 0000 1 1100011

Solution: beq t0, t1, Loop

newPC = oldPC + immediate ∗ 2
= 0x00400020+2∗(−16) = 0x00400020−32 = 0x00400020−0x20 = 0x00400000

December 13, 2022 page 1 of 11

Winter 2022-2023 initials: CSSE 232

(c) (3 points) This block of 7 instructions is replicated multiple times throughout the
kernel code. Would the bge and jal instructions have the same machine translation
in every replicate as the ones in the table above? Why or why not?

Solution: Yes because everything is PC-relative.

December 13, 2022 page 2 of 11

Winter 2022-2023 initials: CSSE 232

Problem 2. (15 points) Pretend you are an assembler. For each pseudo-instruction in the
following table, give a minimal sequence of actual RISC-V instructions to accomplish
the same thing. You may need to use x31 for some of the sequences. BIG indicates an
immediate value that is 32 bits and SML indicates an immediate value that fits in 12
bits. You may need to refer to specific bits of the immediate by index, e.g. SML[11].

Pseudo-instruction Description
lwByIndex t0, t1, t2 t1 contains a pointer to

an array, and t2 an index
in that array, t0 will get
the data from the array
at index t2 (t0 = t1[t2]).

Solution: slli x31, t2, 2
add x31, x31, t1
lw t0, 0(x31)

PUSH a0 Makes space on the stack
and then pushes the data
in a0 onto the stack.

Solution: addi sp, sp, -4
sw a0, 0(sp)

LL12 t0, 0x888 Loads the lower 12 bits
of a register, filling the
top 20 bits with 0s.

Solution: lui t0, {SML, 8b’0}
srli t0, t0, 20

December 13, 2022 page 3 of 11

Winter 2022-2023 initials: CSSE 232

Problem 3. Your team is designing a RISC-V-like machine with 16-bit instructions, 12-bit
addresses, and 16-bit words. Assume the machine has 64 different opcodes and has 8
registers.

(a) (5 points) Your team creates an instruction format that has an opcode, one register
operand, and an immediate. Draw the instruction format for this instruction type.
Label each field and show the size (in bits) of each field. Be sure to label any unused
bits.

Solution: [imm-7b][rs-3b][op-6]

(b) (5 points) If the above format is used for pc-relative branches, what is the range
of branch targets? Express your answer as the number of instructions before and
after the PC where the branch can go (for example, “from PC-400 to PC+200
instructions”)

Solution: with a 7-bit immediate, we can select from 2128 instructions by
shifting the immediate one bit. Signed immediates mean half are negative, and
one is zero. This means, we can branch from PC−26 instructions to PC+26−1
instructions; PC-64 to PC+63.

1. Explain your addressing mode, specifically how you use the immediate field to
calculate the branch target.

Solution: Something about the immediate being a signed “instruction offset”
added to the PC. . . to make byte offset, shift one bit. PC = imm << 1 + pc.

(This problem continues on the next page. . .)

December 13, 2022 page 4 of 11

Winter 2022-2023 initials: CSSE 232

(c) (5 points) Consider the pseudo-instruction la that loads large immediate values
(addresses that are 12-bits in size) into a register. How should la be implemented?
Remember, you are the designer – you may use instructions with the format above
or design new instruction formats.

Solution: Solutions vary. Beware of sign-extension/zero extension. If imme-
diate field is six-bits and sign-extension is used, gotta deal with that. We’re
loading addresses, so nothing should be negative. Also NOTE: registers are 16
bits, but the immediate/address is 12 bits. One option: set/shift/ori (note, o
below is a zero, but displayed as o for explanation).

li 0xBFC == li 0b10 1111 11 1100

-- note: set and ori zero-extend the immediate --

set rs, 0x2F # 6 upper bits (-> 0boooo oooo oo10 1111)

sll rs, 6 # (-> 0boooo 1010 10oo oooo)

ori rs, 0x3C # next 6 (-> 0boooo 1010 1011 1100)

(d) (5 points) Justify your design; state both the major advantages and the major dis-
advantages of your design (more than one of each).

Solution: Advantages: doesn’t require new format, only three instruction ops,
simple.
Disadvantages: three instructions to load 12 bits. Requires use of “set” and
zero-extension.

December 13, 2022 page 5 of 11

Winter 2022-2023 initials: CSSE 232

Problem 4. (25 points) Below is python code for a small program. Based on the code,
answer the following questions and then complete the missing portions of the procedure
below, adhering to the RISC-V procedure call conventions. Do NOT optimize or change
the logic of this code.

def calc_value(A):

x = A + 7

y = adjust(x)

z = y + 3

z = modify(z, 3)

result = x - z

return (result)

You can assume that both adjust and modify are procedures that exist (you do not
need to write them), and these procedures follow the RISC-V calling conventions. As-
sume all local variables (e.g. x and y) are only stored in registers and not in main memory.

December 13, 2022 page 6 of 11

Winter 2022-2023 initials: CSSE 232

calc value:

jal ra, adjust ;call to adjust

jal ra, modify ;call to modify

December 13, 2022 page 7 of 11

Winter 2022-2023 initials: CSSE 232

jalr x0, 0(ra)

Solution: this solution does not use s-registers, but that would be a viable alterna-
tive.

calc_value:

addi sp, sp, -8

sw ra, 0(sp)

addi a0, a0, 7

sw a0, 4(sp)

jal ra, adjust

addi a0, a0, 3

addi a1, x0, 3

jal ra, modify

lw t0, 4(sp)

sub a0, t0, a0

lw ra, 0(sp)

addi sp, sp, 8

jalr x0, 0(ra)

December 13, 2022 page 8 of 11

Winter 2022-2023 initials: CSSE 232

Problem 5. You are the lead designer for a real-time 32-bits RISC-V processor. Your
customer has demanded that the execution time of the benchmark program should not
be longer than 5 µ seconds.

(a) (5 points) Your customer has provided you with a sample set of benchmarks that
they wish to run on your processor. After some calculations, your team collects
the following data from the benchmark suite. Calculate the average CPI for your
processor.

Instruction Type CPI Count
mem 10 400
branch 3 50
arithmetic 7 200
logical 3 60
jump 1 40

Solution: 400 + 50 + 200 +60 + 40 = 750 inst
4000 + 150 + 1400 + 180 + 40 = 5770 cycles
5770 / 750 = 7.70 CPI

(b) (5 points) What is the minimum clock frequency (remember, frequency = 1
cycle time

)
that your processor must run at in order to meet the customer’s requirements?

Solution: ET = inst * CPI * cycletime
5 ∗ 10−6 = 750 ∗ 5770/750 ∗ F = 5770 ∗ F
F = 8.67 ∗ 10−4 ∗ 10−6 = 8.67 ∗ 10−10 = 0.867 ∗ 10−9sec/cycle
= 1.15 ∗ 109cycles/sec = 1.15GHz

question continues on next page...

December 13, 2022 page 9 of 11

Winter 2022-2023 initials: CSSE 232

(c) (5 points) Your team noticed that a large portion of the benchmark program is
made up of memory operations, and thus they have suggested adding a few com-
plex instructions that can read and write from memory in one instruction. After
some analysis, this leads to reducing the number of memory instructions by 25%.
However, memory instructions now take 12 cycles to execute. What is the new
average CPI?

Solution: 300 + 50 + 200 +60 + 40 = 650 inst
(300*12) + 150 + 1400 + 180 + 40 = 5370 cycles
5370 / 650 = 8.26 CPI

(d) (5 points) Assuming you keep the processor running at the same minimum fre-
quency calculated earlier, will the new design still meet the clients requirements?
Show your work to support your answer.

Solution: ET = inst * CPI * cycletime
ET = 650∗5370/650∗0.867∗10−9 = 5.37∗103 ∗0.867∗10−9 = 4.66∗10−6sec =
4.66µsec
Yes ET still less than 5 µ sec

December 13, 2022 page 10 of 11

RISC-V Reference

Base Integer Instructions

Inst Name FMT Opcode funct3 funct7 Description Note
add ADD R 0110011 000 000 0000 R[rd] = R[rs1] + R[rs2]
sub SUB R 0110011 000 010 0000 R[rd] = R[rs1] - R[rs2]
xor XOR R 0110011 100 000 0000 R[rd] = R[rs1] ˆ R[rs2]
or OR R 0110011 110 000 0000 R[rd] = R[rs1] | R[rs2]
and AND R 0110011 111 000 0000 R[rd] = R[rs1] & R[rs2]
sll Shift Left Logical R 0110011 001 000 0000 R[rd] = R[rs1] << R[rs2]
srl Shift Right Logical R 0110011 101 000 0000 R[rd] = R[rs1] >> R[rs2]
sra Shift Right Arith* R 0110011 101 010 0000 R[rd] = R[rs1] >> R[rs2] sign-extends
slt Set Less Than R 0110011 010 000 0000 R[rd] = (rs1 < rs2)?1:0
addi ADD Immediate I 0010011 000 R[rd] = R[rs1] + SE(imm)
xori XOR Immediate I 0010011 100 R[rd] = R[rs1] ˆ SE(imm)
ori OR Immediate I 0010011 110 R[rd] = R[rs1] | SE(imm)
andi AND Immediate I 0010011 111 R[rd] = R[rs1] & SE(imm)
slli Shift Left Logical Imm I 0010011 001 imm[11:5] =0x00 R[rd] = R[rs1] << imm[4:0]
srli Shift Right Logical Imm I 0010011 101 imm[11:5] =0x00 R[rd] = R[rs1] >> imm[4:0]
srai Shift Right Arith Imm I 0010011 101 imm[11:5] =0x20 R[rd] = R[rs1] >> imm[4:0] sign-extends
lw Load Word I 0000011 010 R[rd] = M[R[rs1]+SE(imm)]
sw Store Word S 0100011 010 M[R[rs1]+SE(imm)] = R[rs2]
beq Branch == SB 1100011 000 if(rs1 == rs2)

PC += SE(imm) << 1
bne Branch != SB 1100011 001 if(rs1 != rs2)

PC += SE(imm) << 1
blt Branch < SB 1100011 100 if(rs1 < rs2)

PC += SE(imm) <<1
bge Branch >= SB 1100011 101 if(rs1 >= rs2)

PC += SE(imm) <<1
jal Jump And Link UJ 1101111 R[rd] = PC+4;

PC += SE(imm) <<1
jalr Jump And Link Reg I 1100111 000 R[rd] = PC+4;

PC = R[rs1]+ SE(imm)
lui Load Upper Imm U 0110111 R[rd] = SE(imm) << 12
auipc Add Upper Imm to PC U 0010111 R[rd] = PC + (SE(imm) << 12)
csrrw CSR read & write I 1110011 001 R[rd] = CSRs[csr];

CSRs[csr] = R[rs1]
csrrs CSR read & set I 1110011 010 R[rd] = CSRs[csr];

CSRs[csr] = CSRs[csr] | R[rs1]
csrrc CSR read & clear I 1110011 011 R[rd] = CSRs[csr];

CSRs[csr] =
CSRs[csr] & ∼R[rs1]

ecall Environment Call I 1110011 000 imm=0x0 Transfer control to OS
ebreak Environment Break I 1110011 000 imm=0x1 Transfer control to debugger

R = Register file access CSR = Control and Status Register
SE = Sign extend CSRs = Coprocessor registers

Core Instruction Formats
31 27 26 25 24 20 19 15 14 12 11 7 6 0

funct7 rs2 rs1 funct3 rd opcode R-type
imm[11:0] rs1 funct3 rd opcode I-type

imm[11:5] rs2 rs1 funct3 imm[4:0] opcode S-type
imm[12|10:5] rs2 rs1 funct3 imm[4:1|11] opcode SB-type

imm[31:12] rd opcode U-type
imm[20|10:1|11|19:12] rd opcode UJ-type

RISC-V Reference Card

Opcodes, Base conversion

Binary Hex Opcode
000 0000 00
000 0001 01
000 0010 02
000 0011 03 lw
000 0100 04
000 0101 05
000 0110 06
000 0111 07
000 1000 08
000 1001 09
000 1010 0A
000 1011 0B
000 1100 0C
000 1101 0D
000 1110 0E
000 1111 0F
001 0000 10
001 0001 11
001 0010 12
001 0011 13 I-type
001 0100 14
001 0101 15
001 0110 16
001 0111 17 auipc
001 1000 18
001 1001 19
001 1010 1A
001 1011 1B
001 1100 1C
001 1101 1D
001 1110 1E
001 1111 1F

Binary Hex Opcode
010 0000 20
010 0001 21
010 0010 22
010 0011 23 sw
010 0100 24
010 0101 25
010 0110 26
010 0111 27
010 1000 28
010 1001 29
010 1010 2A
010 1011 2B
010 1100 2C
010 1101 2D
010 1110 2E
010 1111 2F
011 0000 30
011 0001 31
011 0010 32
011 0011 33 R-type
011 0100 34
011 0101 35
011 0110 36
011 0111 37 lui
011 1000 38
011 1001 39
011 1010 3A
011 1011 3B
011 1100 3C
011 1101 3D
011 1110 3E
011 1111 3F

Binary Hex Opcode
100 0000 40
100 0001 41
100 0010 42
100 0011 43
100 0100 44
100 0101 45
100 0110 46
100 0111 47
100 1000 48
100 1001 49
100 1010 4A
100 1011 4B
100 1100 4C
100 1101 4D
100 1110 4E
100 1111 4F
101 0000 50
101 0001 51
101 0010 52
101 0011 53
101 0100 54
101 0101 55
101 0110 56
101 0111 57
101 1000 58
101 1001 59
101 1010 5A
101 1011 5B
101 1100 5C
101 1101 5D
101 1110 5E
101 1111 5F

Binary Hex Opcode
110 0000 60
110 0001 61
110 0010 62
110 0011 63 SB-type
110 0100 64
110 0101 65
110 0110 66
110 0111 67 jalr
110 1000 68
110 1001 69
110 1010 6A
110 1011 6B
110 1100 6C
110 1101 6D
110 1110 6E
110 1111 6F jal
111 0000 70
111 0001 71
111 0010 72
111 0011 73 exceptions
111 0100 74
111 0101 75
111 0110 76
111 0111 77
111 1000 78
111 1001 79
111 1010 7A
111 1011 7B
111 1100 7C
111 1101 7D
111 1110 7E

Registers

Register Name Description Saver
x0 zero Zero constant —
x1 ra Return address Caller
x2 sp Stack pointer Callee
x3 gp Global pointer —
x4 tp Thread pointer —
x5-x7 t0-t2 Temporaries Caller
x8 s0 / fp Saved / frame pointer Callee
x9 s1 Saved register Callee
x10-x11 a0-a1 Fn args/return values Caller
x12-x17 a2-a7 Fn args Caller
x18-x27 s2-s11 Saved registers Callee
x28-x30 t3-t5 Temporaries Caller
x31 at Assembler Temporary Caller

Memory Allocation

SP → 0xFFFF FFF0 Stack

↓

↑

Dynamic Data

0x1000 0000 Static Data

PC → 0x0040 0000 Text

Reserved

Modified from https://github.com/jameslzhu/riscv-card by James Zhu

