G

CSSE 230 Day 21

Heapsort

After this lesson, you should be able to ...
... explain how and why you can build a heap in O(n) time
... implement heapsort

Sorting Problem

arr

16

21

12

= Given array arr of Comparables, sort arr.

ﬁ

arr

10

12

16

21

ldea: Using an auxiliary data
structure for sorting

arr arr

5 1016 |8 |21 |3 |7 |12 3 |5 |7 |8 101216

N A

Start with an empty awxi/iary data structure, DS
Step A. Insert each item from the unsorted array into DS
= Step B. Copy the items from DS (selecting the most

extreme item first, then the next most extreme, etc.) one
at a time, back into the original array

= What data structures work for DS?
= BST? Hash set? PQ/heap?

Naive Heapsort

= Start with empty heap

= Step A. Insert each array element into heap,
being sure to maintain the heap property
after each insert

= Step B. Repeatedly run deleteMin on the heap,
copying elements back into array.

= Analysis?

Analysis of naive heapsort
= Claim. log1 +1log2 +log3 + -+ logN is ©(NlogN).

Use Stirling's
approximation:
Wikipedia link nn!l=nlhn —n- O(ln(n))|

10°
10° +
104 +
103 +
10% F
10! F

10°

10-1 1 q 1 M)
10° 10° 107 10° 104 10°

http://en.wikipedia.org/wiki/Stirling's_approximation

4-5a,b

Analysis of naive heapsort
= Add the elements to the heap

» Repeatedly call insert O(n log n)
= Copy the elements back to the array in order

» Repeatedly call deleteMin O(n log n)
= Total O(n log n)

» Can we do better for the insertion part?

» Yes, we don’t need it to be a heap until we are ready to
start deleting.

» insert all the items in arbitrary order into the heap’s
internal array and then use BuildHeap (next)

BuildHeap takes a complete tree that 1s not a heap and
exchanges elements to get it into heap form

At each stage 1t takes a root plus two heaps and "percolates
down" the root to restore "heapness" to the entire subtree

* Establash heap order properiv from an arbaitrary
* grrangement of 21tems. Runs ain lainear time
private vold buildHeap |)
{
for(int i = currentSize / 2; 1 > 0; i--)
percolateDown(1)
H

Why this starting point?

Figure 21.17 Implementation of the linear-time buildHeap method

private volid buildHeap |)
{

for(int i = currentSize / 2; 1 > 0; i--)
percolateDowni(1)

Figure 21.18

(a) After percolateDown(6);
(b) after percolateDown(5)

Data Structures & Problem Solving using JAVA/2E~ Mark Allen Weiss ~ © 2002 Addison Wesley

Figure 21.19

(a) After percolateDown(4);
(b) after percolateDown(3)

Figure 21.20

(a)After percolateDown(2);
(b) after percolateDown(1) and buildHeap terminates

Analysis of BuildHeap

* Find a summation that represents the
maximum number of comparisons required
to rearrange an array of N=2H+1-1 elements
into a heap
= How many comparisons? The sum of the heights.

= Can you find a summation and its value?

* |In HWS8, you’ll do this.
= Conclusion: buildHeap is O(N)

Analysis of better heapsort

= Add the elements to the heap
=nsert-n-elements-into-heap (call buildHeap, faster)

» Remove the elements and place into the array
= Repeatedly call deleteMin

8-11

In-place heapsort

= With one final tweak, heapsort only needs
O(1) extra space!

= |dea:
= When we deleteMin, we free up space at the end
of the heap’s array.
= |[dea: write deleted item in just-vacated space!
= Would result in a reverse-sort. Can fix in linear

time, but better: use a max-heap. Then, comes
out in order!

http://www.cs.usfca.edu/~galles/visualization/HeapSort.html

