
AVL trees and rotations

/

This week, you should be able to…
…perform rotations on height-balanced trees,

on paper and in code
… write a rotate() method
… search for the kth item in-order using rank

§ Term project partners posted
§ Sit with partner(s).
§ Read the spec (by Thu?) and start planning.

§ Exam 2 next class
§ 1st 25 minutes for Day #14 slides
§ Remaining 85 minutes for Exam #2

Consider method fooTraverse() defined in BinaryNode class:

fooTraverse()
If base case:

Return the appropriate value
If not at base case:

1. Compute a value for current node
2. Call left.fooTraverse() and right.fooTraverse()
3. Combine all results and return it

§ This is O(n) if the computation on the node is constant-time
§ Style: pass info through parameters and return values.

§ Do not declare and use extra instance variables (fields) in BinaryTree class

Consider method fooNavigate() defined in BinaryNode class

fooNavigate()
If base case:

Do required work at target location navigated to
If not at base case:

1. Compute which subtree to navigate into
2. Call either left.fooNavigate() or right.fooNavigate()
3. Do (optional) work after the recursive call

§ This is O(height) and if the BST is height-balanced then O(log(n))
§ Style: pass info through parameters and return values.

§ Do not declare and use extra instance variables (fields) in BinaryTree class

§ Sometimes in a traversal, the order nodes are considered
matters
§ Preorder, inorder, postorder

§ An iterator can be used to manually control a traversal
§ To do lazily, the iterator must have its own stack (or other data structure)

replacing the stack of recursive calls

§ When editing a tree (inserting/removing a node), we suggest
using the “return this” pattern

Q1

§ Total time to do insert/delete =
Time to find the correct place to insert = O(height)
+ time to detect an imbalance
+ time to correct the imbalance

§ If we don’t bother with balance after insertions and
deletions?

§ If try to keep perfect balance:
§ Height is O(log n) BUT …
§ But maintaining perfect balance requires O(n) work

§ Height-balanced trees are still O(log n)
§ |Height(left) – Height(right)| ≤ 1
§ For T with height h, N(T) ≥ Fib(h+3) – 1
§ So H < 1.44 log (N+2) – 1.328 *

§ AVL (Adelson-Velskii and Landis) trees maintain
height-balance using rotations

§ Are rotations O(log n)? We’ll see…

Two possible data representations for: / = \
§ Use just two bits, e.g., in a low-level language
§ Use enum type in a higher-level language like Java

or/ = \or

Q2

/ : Current node's left subtree is taller by 1 than its right subtree
= : Current node's subtrees have equal height
\ : Current node's right subtree is taller by 1 than its left subtree

§ Insert as usual for a BST
§ Move up from the newly inserted node

to the lowest “unbalanced” node (if any)
§ Use the balance code to detect unbalance -

how?
§ Why is this O(log n)?
§ We move up the tree to the root in worst case,

NOT recursing into subtrees to calculate heights

/

Q3

§ Assume tree is height-balanced before insertion

§ Do an appropriate rotation (see next slides) to
balance the subtree rooted at this unbalanced
node

§ For example, a single left rotation:

§ Two basic cases:
§ “Seesaw” case:
§ Too-tall sub-tree is on the outside
§ So tip the seesaw so it’s level

§ “Suck in your gut” case:
§ Too-tall sub-tree is in the middle
§ Pull its root up a level

Diagrams are from Data Structures by E.M. Reingold and W.J. Hansen

Unbalanced node

Middle sub-tree
attaches to lower node

of the “see saw”

Q4-5

Weiss calls this “right-left double rotation”

Unbalanced node

Pulled up
Split between the

nodes pushed down

Q6-7

§ Write the method:
static BalancedBinaryNode singleRotateLeft (

BalancedBinaryNode parent, /* A */
BalancedBinaryNode child /* B */) {

}
§ Returns a reference to the new root of this subtree.
§ Don’t forget to set the balanceCode fields of the nodes.

Q8

§ Write the method:
static BalancedBinaryNode singleRotateLeft (

BalancedBinaryNode parent, /* A */
BalancedBinaryNode child /* B */) {

}
§ Returns a reference to the new root of this subtree.
§ Don’t forget to set the balanceCode fields of the nodes.

Q8

§ Write the method:
BalancedBinaryNode doubleRotateRight (

BalancedBinaryNode parent, /* A */
BalancedBinaryNode child, /* C */
BalancedBinaryNode grandChild /* B */) {

}
§ Returns a reference to the new root of this subtree.
§ Rotation is mirror image of double rotation from an

earlier slide

§ If you have to rotate after insertion, you can
stop moving up the tree:
§ Both kinds of rotation leave height the same as

before the insertion!

§ Is insertion plus rotation cost really O(log N)?

Q9,Q1,Q10-11

Insertion/deletion in AVL Tree: O(log n)
Find the imbalance point (if any): O(log n)
Single or double rotation: O(1)
Total work: O(log n)

Foreshadow:
for deletion # of rotations: O(log N)

Like BST, except:

1. Keep height-balanced
2. Insertion/deletion by index, not by comparing elements.

So not sorted

EditorTree et = new EditorTree()
et.add(‘a’) // append to end
et.add(‘b’) // same
et.add(‘c’) // same. Rebalance!
et.add(‘d’, 2) // where does it go?
et.add(‘e’)
et.add(‘f’, 3)

§ Notice the tree is height-balanced (so height
= O(log n)), but not a BST

§ Gives the in-order position of this node
within its own subtree
i.e., rank = the size of its left subtree

§ How would we do get(pos)?

§ Insert and delete start similarly

0-based
indexing

Suppose EditorTree’s toString method performs an
in-order traversal

Then:
String s2 = t5.toString(); // s2 = “SLIPPERY”

§ Character ‘S’ is at position 0, and has rank 0
§ Character ‘L’ is at position 1, and has rank 1
§ Character ‘I’ is at position 2, and has rank 0
§ Character ‘P’ is at position 3, and has rank 1
§ Character ‘P’ is at position 4, and has rank 0
§ Character ‘E’ is at position 5, and has rank 5
§ Character ‘R’ is at position 6, and has rank 0
§ Character ‘Y’ is at position 7, and has rank 1

§ |s2| = 8

Milestone 1 due in day 17.
Start soon!

Read the specification and check out the
starting code

