CSSE 230 Day 8

Binary Tree Iterators

After today, you should be able to...
.. implement a simple iterator for trees
.. implement _lazy_ iterators for trees



Questions?

Quiz question: What became clear to you as a result of class?

Another 230 student, not to be outdone:
Trees are unbelLEAFable fun when you can use recursion to traverse

them, which helps you get to the ROOT of the problem.




Binary Tree lterators

What if we want to iterate over
the elements in the nodes of the

tree one-at-a-time instead of
just printing all of them?




What’s an iterator?

» In Java, specified by java.util.Iterator<E>

boolean

hasHext ()
Returns true if the tteration has more elements.

|t4

next ()
Returns the next element in the teration.

wvoid

remove ()
Removes from the underlying collection the last element returned by the tterator (optional operation).




Using an Iterator

For any data structure that implements lterable, (i.e., it defines
the factory method iterator() which returns an iterator over the
data) we can use the “foreach” syntax:

for (Integer val : iterableDataStruct) {

}

This is equivalent to:

for (Iterator<Integer> itr = iterableDataStruct.iterator();
itr.hasNext();
) {

Integer val = itr.next();



Using a Tree Iterator

Creating a tree iterator would allow us to traverse a tree
iteratively (rather than recursively).

for (T item : binarySearchTree) {

}

We could have different iterators for different traversal orders.

Iterator<T> preOrderIt = new PreOrderIterator();
while (preOrderIt.hasNext()) {
T item = preOrderIt.next();



Implement an (inefficient) inorder
iterator using toArrayList().

» Pros: easy to write.
» Cons? We'll see shortly!

Tree level (header)

ArrayList<T> list

= new ArrayList<T>(); Node level (recursion)
root.toArrayList(list);

& list
Put Contents of l

tree j 5= fIF
€€ In this iy NULL_NODE 2 list.add(x)
return llst; return 1eft.toAr‘r‘ayList(lis:% right.toArrayList(list);

'I “Put contents of your 3 “Put contents of your
tree in this list” tree in this list”

toArrayList()




Why is the ArrayListlterator an
inefficient iterator?

» Consider a tree with 1 million elements.

» What if we only end up iterating over the first
10 elements?

» To improve efficiency, the iterator should
iterate on the tree itself.

> Constructor should do minimal setup

> On each .next() query, only do as much work as
needed to respond & set up for future queries

> |In this context, laziness means efficiency!



Design an efficient preorder
iterator

» Preorder: root, left, right

1 visit

2 “preorder-traverse

3 “preorder-traverse
subtree”

subtree”

» Rather than carrying out all instructions at once, we
should lazily handle them

» Store “tokens” representing pending instructions in a
data structure (what data structure?)

4-5



Design an efficient inorder iterator

» Inorder: left, root, right
2 visit

-I “inorder-traverse 3 “inorder-traverse
subtree” subtree”

» Consider two types of instruction tokens:
- 0: “traverse subtree”;
- 1: “visit node and traverse its right subtree”

Could represent tokens with,

class Token {
say, a compound class:

BinaryNode node;

int tag;
Use a Stack<Token> to store }

instructions
» Loop: pop and either (0) push it and left, or (1) push right and return data



Design an efficient inorder iterator

» The idea of using instruction tokens extends nicely to
postorder iterators too.

» If you just need an inorder iterator, an alternative is,

whenever you see a node for the first time, to proactively
push a chain of its left children.

®\®
O (©



Another Iterator

» What happens if we replace the Stack in the
preorder iterator with a Queue?



Work time

Suggestion: work on Doublets

with your partner!




