

Some Software Engineering Techniques 
(Class Diagrams and Pair Programming)  

}  Programs typically begin as abstract ideas
}  These ideas form a set of abstract

requirements
}  We must take these abstract requirements,

use piecewise elaboration and refinement
until specifications emerge
◦  Then models
◦  … concrete implementation

}  Class Diagrams (UML)
}  UML – Unified Modeling Language
◦  Language unspecific
◦  provides guidance as to the order of a team’s

activities
◦  specifies what artifacts should be developed
◦  directs the tasks of individual developers and the

team as a whole
◦  offers criteria for monitoring and measuring a

project’s products and activities

}  The Unified Modeling Language™ (UML®) is a
standard visual modeling language intended
to be used for
◦  modeling business and similar processes,
◦  analysis, design, and implementation of software-

based systems
UML is a common language for business
analysts, software architects and developers
used to describe, specify, design, and
document existing or new business processes,
structure and behavior of artifacts of software
systems.

ProductCatalog

...

getProductDesc(...)

Sale

isComplete : Boolean
time : DateTime

becomeComplete()
makeLineItem(...)
makePayment(...)
getTotal()

Register

...

endSale()
enterItem(id: ItemID, qty : Integer)
makeNewSale()
makePayment(cashTendered : Money)

public class Register
{
private ProductCatalog catalog;
private Sale currentSale;

public Register(ProductCatalog pc) {...}

public void endSale() {...}
public void enterItem(ItemID id, int qty) {...}
public void makeNewSale() {...}
public void makePayment(Money cashTendered) {...}
}

1

1

catalog

currentSale

}  Shows the:
◦  Attributes 

(data, called fields  
in Java) and
◦  Operations 

(functions, called
methods in Java)

of the objects of a class
}  Does not show the

implementation
}  Is not necessarily

complete

String
data:	 char[]	

boolean	 contains(String	 s)	

boolean	 endsWith(String	 suffix)	

int	 indexOf(String	 s)	

int	 length()	

String	 replace(String	 target,	
	 	 	 	 String	 replace)	

String	 substring(int	 begin,	 	
	 	 	 	 	 	 int	 end)	

String	 toLowerCase()	

Class name

Fields

Methods
String objects are immutable – if the method produces
a String, the method returns that String rather than
mutating (changing) the implicit argument

We’re	 concerned	 here	

String
data:	 char[]	

boolean	 contains(String	 s)	

boolean	 endsWith(String	
suffix)	

int	 indexOf(String	 s)	

int	 length()	

String	 replace(String	 target,	
	 	 	 	 String	 replace)	

String	 substring(int	 begin,	 	
	 	 	 	 	 	 int	 end)	

String	 toLowerCase()	

Person
name:	 String	
phone:	 String	
ssn:	 String	

String	 getName()	

String	 getPhone()	

String	 getSSN()	

…	

}  The “things” of what you’re describing usually
become the classes
◦  The verbs usually become methods of the classes

}  Avoid using plurals
◦  We make an ArrayList of Face objects, not Faces.

}  Make it work!
◦  Go through it with some “use case” in mind and

make sure that when this object is created, you can
accomplish that case. Otherwise, redesign that
design until it “works!!!”

}  Come from nouns in the problem description
}  May…
◦  Represent single concepts
�  Circle, Investment
◦  Represent visual elements of the project
�  FacesComponent, UpdateButton
◦  Be abstractions of real-life entities
�  BankAccount, TicTacToeBoard
◦  Be actors
�  Scanner, CircleViewer
◦  Be utility classes that mainly contain static methods
�  Math, Arrays, Collections

}  Can’t tell what it does from its name
◦  PayCheckProgram

}  Turning a single action into a class
◦  ComputePaycheck

}  Name isn’t a noun
◦  Interpolate, Spend

Function
objects are an
exception.
Their whole
purpose is to
contain a
single
computation

*See http://en.wikipedia.org/wiki/Code_smell
 http://c2.com/xp/CodeSmell.html

}  Task: Make Class
diagrams for the
Invoice example

Class Name
Fields	

Methods	

}  Task: Make Class
diagrams for the
Simplified Blackjack
example

Class Name
Fields	

Methods	

}  Two programmers work side-by-side at a computer,
continuously collaborating on the same design,
algorithm, code, and/or test 

}  Enable the pair to produce higher quality code than
that produced by the sum of their individual efforts 

}  Let’s watch a video…

}  Working in pairs on a single computer
◦  The driver, uses the keyboard, talks/thinks out-

loud
◦  The navigator, watches, thinks, comments, and

takes notes
◦  Person who really understands should start by

navigating J  

}  For hard (or new) problems, this technique
◦  Reduces number of errors
◦  Saves time in the long run

}  Pair-Pressure
◦  Keep each other on task and focused
◦  Don’t want to let partner down 

}  Pair-Think
◦  Distributed cognition:

�  Shared goals and plans
�  Bring different prior experiences to the task
�  Must negotiate a common shared of action 

}  Pair-Relaying
◦  Each, in turn, contributes to the best of their knowledge  

and ability
◦  Then, sit back and think while their partner fights on

Abstracted from: Robert Kessler and Laurie Williams

}  Pair-Reviews
◦  Continuous design and code reviews
◦  Improved defect removal efficiency (more eyes to identify errors)
◦  Removes programmers distaste for reviews (more fun)  

}  Debug by describing
◦  Tell it to the “Rosie in the Room” 

}  Pair-Learning
◦  Continuous reviews à learn from partners
◦  Apprenticeship
◦  Defect prevention always more efficient than defect removal

Abstracted from: Robert Kessler and Laurie Williams

Expert paired with an Expert
Expert paired with a Novice

Novices paired together Professional Driver Problem Culture

Source: Robert Kessler and Laurie Williams

