
A Software Engineering Technique:
(Class Diagrams)

Download FirstOODesignPractice from
SVN

 Programs typically begin as abstract ideas

 These ideas form a set of abstract
requirements

 We must take these abstract requirements,
use piecewise elaboration and refinement
until specifications emerge
◦ Then models

◦ … concrete implementation

 Many different options
◦ Waterfall, Spiral, Iterative, etc.

 For this class, we’ll follow a much simpler
process than these:
◦ Design

◦ Development/Test

 These are not mutually exclusive, but a good
order to start with, then elaborate and refine
◦ Feel free to write tests before development if you

like TDD 

Class Diagramming

 Class Diagrams (UML)

 UML – Unified Modeling Language
◦ Language unspecific

◦ provides guidance as to the order of a team’s
activities

◦ specifies what artifacts should be developed

◦ directs the tasks of individual developers and the
team as a whole

◦ offers criteria for monitoring and measuring a
project’s products and activities

 The Unified Modeling Language™ (UML®) is a
standard visual modeling language intended
to be used for
◦ modeling business and similar processes,

◦ analysis, design, and implementation of software-
based systems

UML is a common language for business
analysts, software architects and developers
used to describe, specify, design, and
document existing or new business processes,
structure and behavior of artifacts of software
systems.

ProductCatalog

...

getProductDesc(...)

Sale

isComplete : Boolean

time : DateTime

becomeComplete()

makeLineItem(...)

makePayment(...)

getTotal()

Register

...

endSale()

enterItem(id: ItemID, qty : Integer)

makeNewSale()

makePayment(cashTendered : Money)

public class Register

{

private ProductCatalog catalog;

private Sale currentSale;

public Register(ProductCatalog pc) {...}

public void endSale() {...}

public void enterItem(ItemID id, int qty) {...}

public void makeNewSale() {...}

public void makePayment(Money cashTendered) {...}

}

1

1

catalog

currentSale

 Shows the:
◦ Attributes

(data, called fields
in Java) and

◦ Operations
(functions, called
methods in Java)

of the objects of a class

 Does not show the
implementation

 Is not necessarily
complete

String

data: char[]

contains(s: String): boolean

endsWith(suffix: String): boolean

indexOf(s: String): int

length(): int

replace(target: String,
replace: String): String

substring(begin: int ,
end: int): String

toLowerCase(): String

Class name

Fields

Methods
String objects are immutable – if the method produces
a String, the method returns that String rather than
mutating (changing) the implicit argument

Inheritance
(is-a)

Interface
Implementation

(is-a)

Association
(has-a-field)

Dependency
(depends-on)

Two-way Association

Two-Way Dependency

Cardinality
(one-to-one, one-to-many)

One-to-many is shown on left

String

data: char[]

contains(String s): boolean

endsWith(String suffix):
boolean

indexOf(String s): int

length(): int

replace(String target,
String replace):

String

substring(int begin,
int end): String

toLowerCase(): String

Person

age: int

getName(): String

getPhone(): String

getSSN(): String

…

 The “things” of what you’re describing usually
become the classes
◦ The verbs usually become methods of the classes

 Avoid using plurals
◦ We make an ArrayList of Face objects, not Faces.

 Make it work!
◦ Go through it with some “use case” in mind and

make sure that when this object is created, you can
accomplish that case. Otherwise, redesign that
design until it “works!!!”

 Come from nouns in the problem description
 May…
◦ Represent single concepts

 Circle, Investment

◦ Represent visual elements of the project
 FacesComponent, UpdateButton

◦ Be abstractions of real-life entities
 BankAccount, TicTacToeBoard

◦ Be actors
 Scanner, CircleViewer

◦ Be utility classes that mainly contain static methods
 Math, Arrays, Collections

 Can’t tell what it does from its name
◦ PayCheckProgram

 Turning a single action into a class
◦ ComputePaycheck

 Name isn’t a noun
◦ Interpolate, Spend

*See http://en.wikipedia.org/wiki/Code_smell
http://c2.com/xp/CodeSmell.html

http://en.wikipedia.org/wiki/Code_smell
http://c2.com/xp/CodeSmell.html

Complete the questions on the quiz, use the UML shown here
for the 3rd question.

 Decide what classes ought to be in the
system and what methods/fields those
classes should have (your design should have
at least 2 classes)

 Don’t forget one class needs to have a main
method

 Make sure your design works!

 Write down your answers on a piece of paper
with all of your team’s names on it

 Call me over when you think you’re done –
then you’ll implement it

 Task: Make Class
diagrams for the
Invoice example
from OrderTaker

Class Name

Fields

Methods

 Decide what classes ought to be in the
system and what methods/fields those
classes should have (your design should have
at least 3 classes)

 Don’t forget one class needs to have a main
method

 Make sure your design works!

 Write down your answers on a piece of paper
with all of your team’s names on it

 Call me over when you think you’re done

 Task: Make Class
diagrams for the
Simplified Blackjack
example

 Make sure all names
are on the page.
Turn this in for your
quiz grade today

Class Name

Fields

Methods

