
Welcome to CSSE 220

• We are excited that you are here:

– Start your computer

– Do NOT start Eclipse

– Follow the instructions in the email, if you haven’t
already

– Pick up a quiz from the back table

• Answer the first two questions

Course Introduction,
Starting with Java

CSSE 220—Object-Oriented Software Development

Rose-Hulman Institute of Technology

Agenda

• Instructor intro

• A few administrative details

• Verify Eclipse and Subclipse configuration

• Java vs. Python

• Examine and modify simple Java programs

Instructor Info
• Amanda Stouder

– Bachelor of Science, Rose-Hulman 2008

– Computer Science and Software Engineering

• Amadeus Consulting

– June 2008 – May 2010

• SEP

– April 2010 – April 2014

• Stouder Software Consulting, LLC

– April 2014 - Now

Instructor Info (continued)

• On Campus Monday, Wednesday, Friday

– Office Hours (M240A)

• 7:30am – 9:45am

• 1:30pm – 3:15pm

– Email – Always by my phone/computer

– If you need another time, let me know and
I’ll do my best

Instructor Info
• Delvin Defoe

– PhD, Washington University in St Louis 2007

– Computer Science and Engineering

• Tenured Associate Professor

– Fall 2013

• SEP

– June 2014 – July 2015

• Christian

– Knightsville Church of Christ

Instructor Info (continued)

• On Campus Mon., Tues., Wednes., Fri.

– Office Hours (M240D)

• See my schedule page

• http://www.rose-
hulman.edu/~defoe/schedule.html

– Email – Always by my phone/computer

– If you need another time, let me know and
I’ll do my best

Daily Quizzes

• I expect you to answer every question.
– Including the last two, at least put N/A

• Stop me if I don’t cover a question!

Q1 - 2

A Tour of the On-line Course Materials

• Moodle

• Piazza

• Syllabus

• Schedule

Q3 – 7

Programming is not a spectator sport

• And neither is this course

• Ask, evaluate, respond, comment!

• Interrupt me! Even with statements like, “I
have no idea what you were just talking
about.”

• I do not intend for classroom discussions to go
over your head. Don't let them!

Ok, let’s write our first Java program!

• Hello world

11

Check the Repository Folder
• Click Start Computer

• Double-Click “Local Disk (C:)”

• Double-Click “EclipseWorkspaces”

– If it doesn’t exist, create it

• Verify that you have a folder named “csse220”

– If it doesn’t exist, create it

• If you have taken the course before:

– Rename the existing folder to “csse220-old”

– Create a new folder named “csse220”

Opening Eclipse

• Start Eclipse

– Go to C:\Program Files\eclipse

– Double-click “eclipse.exe”

• When prompted for the workspace, enter:

– C:\EclipseWorkspaces\csse220

• If not prompted for the workspace, after
Eclipse loads:

– Click File Switch Workspaces Other

– Enter path above

Select Perspective

• Look at the top-right corner of Eclipse

• If “Java” is selected, do nothing and wait for
next slide

• Otherwise:

– Click Window Perspective Other…

– Select “Java”

– Click OK

Set Compiler Version

• Open Eclipse

• Select Window -> Preferences

• Expand Java in the left menu

• Click Compiler

• Select compiler compliance level of 1.7 and
check "Use default compliance settings" if it
isn't already selected.

• Click OK

Get SVN Menu

• If SVN menu not shown at the top of the
screen:

– Click Window Perspective Customize
Perspective

– Click “Command Groups Availability” OR
“Action Set Availability”

– Scroll down and check “SVN”

– Click “OK”

SVN Repositories Window

• You can also display the SVN Repositories
Window by doing the following:

– Click Window Show View Other…

– Expand SVN

– Select “SVN Repositories”

– Click OK

Add Your Repository

• Click SVN “Checkout projects from SVN”

– Select “Create a new repository location”

• Click Next

• Type the following URL, replace the user in
blue with your username:
http://svn.csse.rose-hulman.edu/repos/csse220-201630-user

Mine would be:
http://svn.csse.rose-hulman.edu/repos/csse220-201630-stouder
OR defoe

• Click Next

Checkout Project for Today

• If you received an error at the end of the last
slide,

– let myself or a TA know immediately

– Use https://svn.csse.rose-
hulman.edu/password/ to reset your SVN
password

• Otherwise, expand your repository and select
“JavaIntro”

• Click Finish

• Do the same for HW1 now if you’d like, or you
can wait and check it out later

https://svn.csse.rose-hulman.edu/password/

Show Package Explorer

• If JavaIntro did not show up in the Package
Explorer (defaults to the left):

– Click Window Show View Package
Explorer

HelloPrinter.java

• To run a Java program:
– Right-click the .java file in Package Explorer view

– Choose Run As → Java Application

• Change the program to say hello to a person next to
you

• Introduce an error in the program
– See if you can come up with a different error than the

person next to you

• Fix the error that the person next to you introduced

public class HelloPrinter {

public static void main(String[] args) {

System.out.println("Hello, World!");

}

}

A First Java Program

In Java, all variable and

function definitions are

inside class definitions main is where we start

System.out is Java's standard

output stream. This is the

variable called out in the

System class.

System.out is an object from

the PrintStream class.

PrintStream has a method

called println().

Q8

Introduction to Java

Things Java Has in Common with Python

• Classes and objects

• Lists (but no special language syntax for them
like Python)

• Standard ways of doing graphics and GUIs

• A huge library of classes/functions that make
many tasks easier

• Nice integration with the Eclipse IDE

Why Java?
• Widely used in industry for large projects

– From cell phones
• including smart phones—Android platform

– To global medical records

• Highlights essential topic of the class – Object
Orientation

• Similar to other popular languages C#, Objective-C
• Less complex than C++
• Most popular language according to the TIOBE

Programming Community Index [March 2016]

Q9

http://www.tiobe.com/index.php/content/paperinfo/t

pci/index.html

Interlude: JavaScript and Java

From Wikipedia (edited, bullets added to enhance PowerPoint readability):

• The change of name to JavaScript roughly coincided with Netscape adding

support for Java technology in its web browser.

• The name caused confusion, giving the impression that JavaScript was a

spin-off of Java.

• The choice has been characterized by many as a marketing ploy by Netscape

to give JavaScript the cachet of what was then the hot new web-programming

language.

• It has also been claimed that the language's name is the result of a co-

marketing deal between Netscape and Sun, in exchange for Netscape

bundling Sun's Java runtime with its then-dominant browser.

Java is to Javascript as Ham is

to Hamster

Basic Java Functions and Conditionals

• Let’s go through the ConditionalExamples.java
file

27

Javadoc
comments

/**

* Has a static method for computing n!

* (n factorial) and a main method that

* computes n! for n up to Factorial.MAX.

*

* @author Mike Hewner & Delvin Defoe

*/

public class Factorial {

/**

* Biggest factorial to compute.

*/

public static final int MAX = 17;

/**

* Computes n! for the given n.

*

* @param n

* @return n! for the given n.

*/

public static int factorial (int n) {

...

}

...

}

We left out something

important on the previous

slide – comments!

Java provides Javadoc

comments (they begin with

/**) for both:

• Internal documentation for

when someone reads the

code itself

• External documentation for

when someone re-uses the

code

Comment your own code now, as

indicated by this example. Don’t

forget the @author tag in

HelloPrinter.

Writing Javadocs

• Written in special comments: /** … */

• Can come before:
– Class declarations

– Field declarations

– Constructor declarations

– Method declarations

• Eclipse is your friend!
– It will generate Javadoc comments automatically

– It will notice when you start typing a Javadoc comment

In all your code:

• Write appropriate comments:
– Javadoc comments for public fields and methods.

– Explanations of anything else that is not obvious.

• Give self-documenting variable and method names:
– Use name completion in Eclipse, Ctrl-Space, to keep typing cost low and

readability high

• Use Ctrl-Shift-F in Eclipse to format your code.

• Take care of all auto-generated TODO’s.
– Then delete the TODO comment.

• Correct ALL compiler warnings. Quick Fix is your friend!

Q10 - 11

HW1 DUE
BEFORE NEXT SESSION

IT’S ON THE SCHEDULE PAGE.
(IT IS YOUR RESPONSIBILITY TO KEEP UP WITH THE SCHEDULE PAGE)

AS ALWAYS, POST ON PIAZZA (OR
EMAIL ME) IF YOU HAVE ANY
QUESTIONS

31

