
CSSE 220

Event Based Programming

Check out EventBasedProgramming from SVN



Interfaces - Review
• Interfaces are contracts

– Any class that implements an interface MUST provide an 
implementation for all methods defined in the interface.

• Interfaces represent the abstract idea (and what it 
can do):

– Discount (calculate discount)

– Function (get name, evaluate result)

• Classes represent the concrete idea:

– Fixed Discount, Percentage Discount

– Add, Multiple, Divide, Subtract, etc. 



Interfaces – Review (continued)

• The specific method to use at runtime is 
decided by late-binding

Function add = new Add();

double result = add.evaluate(doubles);

The declared type of add is Function

The instantiation type is Add

At run-time, Java will use the method 
implementation of evaluate from the Add class 
thanks to late-binding.



Finish the sentence

Using interfaces can help reduce _______ 
between classes.

a. Coupling

b. Cohesion

c. Encapsulation

d. Polymorphism

We need interfaces for event-based 
programming in Java.



Graphical User Interfaces in Java

• We say what to draw

• Java windowing 
library:
– Draws it
– Gets user input
– Calls back to us with 

events

• We handle events Hmm, donuts

Gooey



Events – What, When, Why, How?
• What:

– Indication that something has occurred in the 
application

• Click, Key Pressed, Window Closed, etc.

• When:

– Operations that are not required to occur in a 
specific order

• User Interaction with screen elements

• Mouse pressed, mouse released, mouse moved, mouse 
clicked, button clicked, key pressed, menu item 
selected, …



Events – What, When, Why, How?

• Why:

– Handles operations that occur in many different 
orders

• How:

– Implement the interface corresponding with the 
event

• Ex, public class ButtonListener implements ActionListener {}

– Create a listener object AND

– Register the event with event source who will call it

• Ex, button.addActionListener(new ButtonListener());



Inner Classes – What, When, Why, 
How?

• What:

– Classes defined inside other classes or methods

• When:

– “Smallish” helper classes

– Often used for ActionListeners

– Sometimes used for allowing multiple types for an 
item:

• Example: Ellipse2D.Double

Outer class Inner class



Inner Classes – What, When, Why, 
How?

• Why:
– Inner class gets access to the final and static fields and 

methods of the containing class

• How:
public class OuterClass {

//fields and methods

class InnerClass {
//inner class’s fields and methods

}
}



Anonymous Classes – What, When, 
Why, How?

• What:
– Anonymous no name
– A special case of inner classes

• When:
– When you only need one instance
– The implementation is very small
– Used for the simplest ActionListeners…

• Why:
– Provide the scope necessary for implementing the handler

• How:
button.addActionListener(new ActionListener() {

//implement methods
}



Inner Classes and Scope

• Inner classes can access any variables in 
surrounding scope

• Caveats:
– Local variables must be final

– Can only use instance fields of surrounding scope if 
we’re inside an instance method

• Example: 
– Prompt user for what porridge tastes like



Key Layout Ideas

• JFrame’s add(Component c) method
– Adds a new component to be drawn

– Throws out the old one!

• JFrame also has method 
add(Component c, Object constraint)
– Typical constraints:

• BorderLayout.NORTH, BorderLayout.CENTER

– Can add one thing to each “direction”, plus center

• JPanel is a container (a thing!) that can display 
multiple components



Repaint (and thin no more)

• To update graphics:
– We tell Java library that we need to be redrawn:

• drawComponent.repaint()

– Library calls paintComponent() when it’s 
ready

• Don’t call paintComponent() yourself!  
It’s just there for Java’s call back.



Mouse Listeners

public interface MouseListener {

public void mouseClicked(MouseEvent e);

public void mouseEntered(MouseEvent e);

public void mouseExited(MouseEvent e);

public void mousePressed(MouseEvent e);

public void mouseReleased(MouseEvent e);

}



So, how do we do this?



Work Time

• LinearLightsOut


