
CSSE 220

Software Engineering Techniques
Encapsulation

Coupling and Cohesion
Scoping

Please check out EncapsulationExamples from your SVN

The plan

• Software Engineering Techniques:

– Pair programming

– Version Control

• Learn 3 essential object oriented design
terms:

– Encapsulation (today’s topic)

– Coupling

– Cohesion

What Is Pair Programming?
• Two programmers work side-by-side at a computer, continuously

collaborating on the same design, algorithm, code, and/or test

• Enable the pair to produce higher quality code than that produced by
the sum of their individual efforts

• Let’s watch a video…

http://www.rose-hulman.edu/class/csse/binaries/VideoDemos/pairprogramming.mov
http://www.google.com/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&docid=2su5DL6nOdzlvM&tbnid=nY7kpcTF_FtAtM:&ved=0CAUQjRw&url=http://www.agile66.com/blogs/2010/02/23/sustainability/&ei=LkbKUs_AN-WuyQHZioHICw&bvm=bv.58187178,d.aWc&psig=AFQjCNF2cgViwv_A69WXzzBKqxYXmLTSng&ust=1389073990404033
http://www.google.com/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&docid=2su5DL6nOdzlvM&tbnid=nY7kpcTF_FtAtM:&ved=0CAUQjRw&url=http://www.agile66.com/blogs/2010/02/23/sustainability/&ei=LkbKUs_AN-WuyQHZioHICw&bvm=bv.58187178,d.aWc&psig=AFQjCNF2cgViwv_A69WXzzBKqxYXmLTSng&ust=1389073990404033

• Working in pairs on a single computer
– The driver, uses the keyboard, talks/thinks out-loud

– The navigator, watches, thinks, comments, and
takes notes

– Person who really understands should start by
navigating 

• For hard (or new) problems, this technique
– Reduces number of errors

– Saves time in the long run

Pair Programming

Q1

How Does This Work? (1 of 2)

• Pair-Pressure
– Keep each other on task and focused
– Don’t want to let partner down

• Pair-Think
– Distributed cognition:

• Shared goals and plans
• Bring different prior experiences to the task
• Must negotiate a common shared course of action

• Pair-Relaying
– Each, in turn, contributes to the best of their knowledge

and ability
– Then, sit back and think while their partner fights on

Abstracted from: Robert Kessler and Laurie Williams
Q2

http://www.google.com/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&docid=Prgl_cokhQpVaM&tbnid=qbwb8SW89o9gfM:&ved=0CAUQjRw&url=http://tommcfarlin.com/pair-programming-peer-discussions/&ei=cUzKUqOrIqr4yAGG04HICQ&bvm=bv.58187178,d.aWc&psig=AFQjCNF2cgViwv_A69WXzzBKqxYXmLTSng&ust=1389073990404033
http://www.google.com/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&docid=Prgl_cokhQpVaM&tbnid=qbwb8SW89o9gfM:&ved=0CAUQjRw&url=http://tommcfarlin.com/pair-programming-peer-discussions/&ei=cUzKUqOrIqr4yAGG04HICQ&bvm=bv.58187178,d.aWc&psig=AFQjCNF2cgViwv_A69WXzzBKqxYXmLTSng&ust=1389073990404033

How Does This Work? (2 of 2)

• Pair-Reviews
– Continuous design and code reviews

– Improved defect removal efficiency (more eyes to identify errors)

– Removes programmers distaste for reviews (more fun)

• Debug by describing
– Tell it to the “Rosie in the Room”

• Pair-Learning
– Continuous reviews  learn from partners

– Apprenticeship

– Defect prevention always more efficient than defect removal

Abstracted from: Robert Kessler and Laurie Williams Q2

http://www.google.com/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&docid=km96QeSMdRZ4tM&tbnid=0kPgYCQPG3UMWM:&ved=0CAUQjRw&url=http://www.printfection.com/codesmack/Pair-Programming-T-Shirt/_p_870059&ei=mU7KUvHRBeGSyAHyn4GwCA&bvm=bv.58187178,d.aWc&psig=AFQjCNF2cgViwv_A69WXzzBKqxYXmLTSng&ust=1389073990404033
http://www.google.com/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&docid=km96QeSMdRZ4tM&tbnid=0kPgYCQPG3UMWM:&ved=0CAUQjRw&url=http://www.printfection.com/codesmack/Pair-Programming-T-Shirt/_p_870059&ei=mU7KUvHRBeGSyAHyn4GwCA&bvm=bv.58187178,d.aWc&psig=AFQjCNF2cgViwv_A69WXzzBKqxYXmLTSng&ust=1389073990404033

Expert paired with an Expert

Expert paired with a Novice

Novices paired together Professional Driver Problem Culture

Partnering the Pair

Source: Robert Kessler and Laurie Williams

SOFTWARE VERSIONS

Software Has Multiple Versions

• Why? Again, software is supposed to change …

• Different releases of a product

• Variations for different platforms
• Hardware and software

• Versions within a development cycle
• Test release with debugging code
• Alpha, beta of final release

• Each time you edit a program

Q3

http://www.google.com/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&docid=LXUNZQz40aj8QM&tbnid=KlyIqgXWT5fptM:&ved=0CAUQjRw&url=http://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Tools/Source_Control&ei=lF3KUvHBMcjhyQGMhoCgBg&psig=AFQjCNGpLhvYBm22bSAtvBwBuTnowCXWZQ&ust=1389080316079162
http://www.google.com/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&docid=LXUNZQz40aj8QM&tbnid=KlyIqgXWT5fptM:&ved=0CAUQjRw&url=http://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Tools/Source_Control&ei=lF3KUvHBMcjhyQGMhoCgBg&psig=AFQjCNGpLhvYBm22bSAtvBwBuTnowCXWZQ&ust=1389080316079162

Scenario I: Normal Development

1.1

You are in the middle
of a project with
three developers
named a, b, and c.

Time

R
eleases

1.1a

1.1b

1.1c

1.2

Version Control Scenario II: Bug Fix

Time

R
eleases

1.2

First public release
of the hot new
product

1.3

1.0 bugfix

1.4

When Two+ People Edit the Same Code

Alice edits
sqrt method

Math.java

Bob edits
sqrt method

Alice commits
changes

Bob attempts to
commit changes

ERROR

Updated
Math.java

Source control system cannot
resolve multiple changes on the
same code, Bob should have
updated and resolved conflicts
before committing.

• Version control tracks multiple versions
– Enables old versions to be recovered
– Allows multiple versions to exist simultaneously

• Always:
– Update before working
– Update again before committing
– Commit often and with good messages

• Communicate with teammates so you don’t edit
the same code simultaneously
– Pair programming ameliorates this issue 

Team Version Control

Q4

Team Version Control

Check Out

EditUpdate

Commit Update

Update and
Commit often!

What if I get a conflict on update?

• If you did an update and now have File.java,
File.java.mine, File.java.rN, and File.java.rM
(where N and M are integers):

– YOU HAVE A CONFLICT!

• Eclipse provides tools for resolving conflicts

• Follow the steps in this link to resolve a conflict:

– http://www.rose-
hulman.edu/class/csse/csse221/current/Resources/Re
solvingSubversionConflicts.htm

http://www.rose-hulman.edu/class/csse/csse221/current/Resources/ResolvingSubversionConflicts.htm

• Regression Testing is important!
– Keep and run old test cases

• Create test cases for new bugs
– Like antibodies, to keep a bug from coming back

• Remember:
– You can right-click the project in Eclipse to run all

the unit tests

Keep Tests in Version Control Too!

Moving on….

• Learn 3 essential object oriented design
terms:

– Encapsulation (today’s topic)

– Coupling

– Cohesion

What if there were no String class?

• Instead, what if we just passed around arrays
of characters - char[]

• And every String function that exists now,
would instead be a function that operated on
arrays of characters

• E.g. char[] stringSubstring(char[] input, int
start, int end)

• Would things be any different? Discuss this
with the person next to you.

The Point of All Program Design

• Say someone has written a program that
works and it has no bugs, but it is poorly
designed. What does that mean? Why do we
care?

• I think there are two things

Encapsulation

• Mike’s definition “grouping some data and the
operations that use that data into one thing
(an object) and preventing that data from
being changed except by using those
operations”

Encapsulation

• Makes your program easier to understand by

– Grouping related stuff together

Q5

Encapsulation

• Makes your program easier to understand by…

– Saving you from having to think about how
complicated things might be

Using put and get in HashMap

Implementing HashMap

http://www.google.com/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&docid=i4WVqDixXRt6hM&tbnid=zUYpDqTbbC0tvM:&ved=0CAUQjRw&url=http://blackbeltbartending.com/?p=31&ei=3VK3UuXUBYTfsAS2uoKwAg&bvm=bv.58187178,d.eW0&psig=AFQjCNHxM327zEzthDBxAv0ucKsLkfnX_g&ust=1387832401396704
http://www.google.com/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&docid=i4WVqDixXRt6hM&tbnid=zUYpDqTbbC0tvM:&ved=0CAUQjRw&url=http://blackbeltbartending.com/?p=31&ei=3VK3UuXUBYTfsAS2uoKwAg&bvm=bv.58187178,d.eW0&psig=AFQjCNHxM327zEzthDBxAv0ucKsLkfnX_g&ust=1387832401396704
http://www.google.com/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&docid=i4WVqDixXRt6hM&tbnid=zUYpDqTbbC0tvM:&ved=0CAUQjRw&url=http://blackbeltbartending.com/?p=31&ei=3VK3UuXUBYTfsAS2uoKwAg&bvm=bv.58187178,d.eW0&psig=AFQjCNHxM327zEzthDBxAv0ucKsLkfnX_g&ust=1387832401396704
http://www.google.com/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&docid=i4WVqDixXRt6hM&tbnid=zUYpDqTbbC0tvM:&ved=0CAUQjRw&url=http://blackbeltbartending.com/?p=31&ei=3VK3UuXUBYTfsAS2uoKwAg&bvm=bv.58187178,d.eW0&psig=AFQjCNHxM327zEzthDBxAv0ucKsLkfnX_g&ust=1387832401396704

Encapsulation

Makes your program easier to change by…

• Allowing you to change how your data is
represented

Q6

City Temperature Activity

• I will split you into two groups

– One group will solve the problem by creating a
new class (see the Class Section example if you are
unsure how to do that)

– The other group will just write the code in main
(see the Letters Example if you are unsure how to
do that)

• If you finish early, try to solve it the other way
too

Encapsulation – a good thing?

• Note that we have the ability to change the
representation of the CityTemperature class

– but how important is that?

• Consider adding a bunch more statistics for
each city (max, min, mode)

• Consider adding statistics overall (e.g. overall
average)

Recall

• Shows the:
– Attributes

(data, called fields
in Java) and

– Operations
(functions, called
methods in Java)

of the objects of a class

• Does not show the
implementation

• Is not necessarily
complete

String

data: char[]

contains(String s) : boolean

endsWith(String suffix) : boolean

indexOf(String s) : int

length() : int

replace(String target,
String replace) : String

substring(int begin,
int end) : String

toLowerCase() : String

Class name

Fields

Methods

TwoVsTwo

• Look at the code to understand the problem
• Try to solve it using classes and encapsulation -

Decide what classes/methods you would use (I
used two new classes and TwoVsTwo main)

• Draw UML for the classes/methods
• Don’t start coding till I or the TA have looked at

your classes!
• Turn in for extra credit! (10 points; due by next

class… No extensions.)
– Answer question on Moodle labeled “TwoVsTwo

Completed???”

• Instructions are online

• This is to be done with a partner

– These are assigned by the instructor and will
be provided shortly, along with the repository
to use

• If you have questions about the
requirements, ask early!

Crazy Eights

• Go to SVN repository view at bottom of workbench
– Window show view Other SVN SVN Repositories

• Right click in SVN View, then choose New SVN
Repository Location
– http://svn.csse.rose-hulman.edu/repos/csse220-201630-

”your_team_repository”

– Your team repository will be csse220-201630-
crazyeightsXX where XX is the team number

– On Moodle, click on “Crazy Eights Team Assignments” to
see to what team you have been assigned

Checkout CrazyEights Project

http://svn.csse.rose-hulman.edu/repos/csse220-201610-%E2%80%9Dyour_team_repository

• Work with your partner on the CrazyEights
project

– Get help as needed

– Follow the practices of pair programming!

• Don’t do any of the work without your
partner!

Work Time

