
CSSE 220

Coupling and Cohesion
Scoping

Please checkout VideoStore from your SVN

The plan

• Learn 3 essential object oriented design
terms:

– Encapsulation (done)

– Coupling

– Cohesion

• Scope (if we have time)

Coupling and Cohesion

• Two terms you need to memorize

• Good designs have high cohesion and low
coupling

At a very high level:

• Low cohesion means that you have a small
number of really large classes that do too
much stuff

• High coupling means you have many classes
which depend too much on each other

Imagine I want to make a Video Game.
Here are two classes in my design.

Which is more cohesive?

GameRunner

main(args:String)
loadLevel(levelName:String)
moveEnemies()
drawLevel(g:Graphics2D)
computeScore():int
computeEnemyDamage()
handlePlayerInput()
doPowerups(…)
runCutscene(cutsceneName:String)
//some more stuff

Image

loadImageFile(filename:String)
setPosition(x:int,y:int)
drawImage(g:Graphics2D)

*Note that in both these classes I’ve omitted the fields for clarity

Cohesion

• A class should represent a single concept. All
interface features should be closely related to
the single concept that the class represents.
Such a class is said to be cohesive.

- Your textbook

• When one class requires another class to do its
job, the first class depends on the second

• Shown on UML
diagrams as:

– dashed line

– with open arrowhead

Dependency Relationship

CSSE_Freshmen

add(students: ArrayList<Student>)
…

Student

getFreshmen(): String

Coupling

//do setup must be called first

this.otherObject.doSetup(var1, var2, var3);

//now we compute the parameter

int var4 = computeForOtherObject(var1,var2);

this.otherObject.setAdditionalParameter(var4);

//finally we display

this.otherObject.doDisplay(this.var5, this.var6);

• Coupling is when one object depends strongly on another

Note that in this design, GameRunner probably had
many objects of the image class, but Image does not

know the GameRunner class even exists. That’s a sign
of low coupling between Image and GameRunner.

GameRunner

main(args:String)
loadLevel(levelName:String)
moveEnemies()
drawLevel(g:Graphics2D)
computeScore():int
computeEnemyDamage()
handlePlayerInput()
doPowerups(…)
runCutscene(cutsceneName:String)
//some more stuff

Image

loadImageFile(filename:String)
setPosition(x:int,y:int)
drawImage(g:Graphics2D)

• Lot’s of dependencies high coupling

• Few dependencies low coupling

Coupling

If we do our design job carefully

• We will break our larger problem into several
classes

• Each of these classes will do one kind of thing
(i.e. they will have high cohesion)

• Our classes will only need to depend on each
other in specific, highly limited ways (i.e. they
will have low coupling). Many classes won’t
even be aware of most of the other classes in
the system.

Imagine that you’re writing code to
manage a school’s students

Things your design should accommodate:
• Handle adding or removing students from the school
• Setting the name, phone number, and GPA for a

particular student
• Compute the average GPA of all the students in the

school
• Sort the students by last name to print out a report of

students and GPA
Discuss and come up with a design with those nearby
you. How many classes does your system need?

Note that

• Cohesion makes us want:

– Many smaller classes

– Classes do only one thing

• If classes are too small

– Tend to need to depend on each other

– Coupling rises

Hints for Designing Objects

• Look for the nouns in your problem, consider
making them objects

• Keep any one object from getting too “fat” –
containing too many methods or fields

• Avoid Plural Nouns

• Avoid Parallel Structures

Practice

• Step 1 – Get into pairs

• Step 2 – Do the Video Store Quiz (you should
talk together but each of you will submit a
separate page)

• Step 3 – the mystery step, where we try and
fix the problem

The Mystery Step

• The problem is that the customer object is not
very cohesive – knows way to much about how
things should be priced

• Update the Rental class to remove the
dependency on Movie
– Use a “toString” or a “getRentalForStatement” to

return a String representation of the information for
the statement

• Try to do something similar to rental points if you
can

Scope is the region of a program in
which a variable can be accessed

• Parameter scope: the whole method body

• Local variable scope: from declaration to block end

public double myMethod() {
double sum = 0.0;
Point2D prev = this.pts.get(this.pts.size() - 1);
for (Point2D p : this.pts) {

sum += prev.getX() * p.getY();
sum -= prev.getY() * p.getX();
prev = p;

}
return Math.abs(sum / 2.0);

}

Variable Scope

• Member scope: anywhere in
the class, including before its
declaration
– Lets methods call other methods

later in the class

• public static class
members can be accessed
from outside with “class
qualified names”
– Math.sqrt()

– System.in

Member Scope (Field or Method)

Class MyClass {

. . .

// member variable declarations

. . .

public void aMethod(params…) {

. . .

// local variable declarations

. . .

for(int i = 0; i < 10; i++)

{. . . }

. . .

}

. . .

}

Member Variable
Scope

Method
Parameter

Scope

Local Variable
Scope

Block scope

Overlapping Scope and Shadowing

public class TempReading {
private double temp;

public void setTemp(double temp) {
… temp …

}
// …

}

this.temp = temp;

What does this
“temp” refer to?

Always qualify field references with
this. It prevents accidental

shadowing.

• Crazy Eights – see due date on schedule page

• Work with your partner on the Crazy Eights project
– Get help as needed

– Finding your partner…

Work Time

Before you leave today, make sure that you and your partner have scheduled a

session to complete the Crazy Eights project
• Where will you meet?

• Try the CSSE lab F-217/225
• When will you meet?

• Consider this evening,
7 to 9 p.m. Exchange contact info in case one of you needs to reschedule.

• Do it with your partner. If your partner bails out, DON’T do it alone until
you communicate with your instructor.

