
Exam Review

Generics

Checkout Generics project from SVN

 Business casual

 Think of it as an internal company
presentation, not a presentation to the public

 Five-minute presentation, two minutes for
questions, two minutes for transition to next
team

 Order of teams will be randomly determined

 Do a quick demo of your project
◦ Show off any "extra" features or things that work

well

 What part was your team's biggest challenge?

 Show one or two interesting code snippets
◦ Highlight your good OO design

◦ May show UML or code

 Ask for questions
◦ And ask questions of other teams

 During work time, pick computer for
presentation, get it working with projector

 Exam is Friday, May 30th at 1:00 pm

 Same general format as previous exams

 Same resources:
◦ Paper part: 1 page of notes

◦ Computer part: Open book, notes, computer;
course web pages and ANGEL pages, JDK
documentation, programs in YOUR CSSE220
repositories

 Comprehensive, but focused on Ch 9-18

 May include problems that make sure you
understand your team's project code

oSimple recursion

oMutual recursion

oTime-space trade-offs

oBasic search algorithms

oBinary search, linear
search

oEfficiency, best/worst
case inputs

oBig-oh notation,
estimating big-oh
behavior of code

oFile I/O, exception
handling

oFunction objects

oLinked-list
implementation

oBasic data structure use
and efficiency

oArrayList, LinkedList,
Stack, Queue,
HashSet, TreeSet,
HashMap, TreeMap

oMultithreading (not locks)

 Interfaces, polymorphism, inheritance and abstract
classes

 Exception handling (try, catch, finally, throw, throws)

 OO design and UML class diagrams

 Basic sorting algorithm

 Insertion sort

 Selection sort

 Merge sort

 Big-oh analysis of each

 Generic programming

 Event handling, layout managers, exploring the Swing
documentation

 Your LodeRunner implementation

Another way to make code
more re-useful

 Java Collections just stored Objects
◦ This was better than creating different collection

classes for each kind of object to be stored

◦ Could put anything in them because of
polymorphism

 Used class casts to get the types right:
◦ ArrayList songs = new ArrayList();
songs.add(new Song("Dawn Chorus", "Modern English"));
…
Song s = (Song) songs.get(1);

◦ songs.add(new Artist("A Flock of Seagulls"));
Song t = (Song) songs.get(2);

Q1run-time error

 Can define collections and other classes
using type parameters
◦ ArrayList<Song> songs = new ArrayList<Song>();
songs.add(new Song("Dawn Chorus", "Modern English"));
…
Song s = songs.get(1); // no cast needed

◦ songs.add(new Artist("A Flock of Seagulls"));

 Lets us use these classes:
◦ in a variety of circumstances

◦ with strong type checking

◦ without having to write lots of casts

compile-time
error

Q2

 Create a doubly linked list

 Include min() and max() methods

 Use polymorphism rather than null checks for
the start and end of the list

 Include fromArray() factory method

Q3-Q5

 Type parameters:
◦ class DLList<E>

 Bounds:
◦ class DLList<E extends Comparable>

◦ class DLList<E extends Comparable<E>>

◦ class DLList<E extends Comparable<? super E>>

 Generic methods:
◦ public static <T> void shuffle(T[] array)

 http://docs.oracle.com/javase/tutorial/java/generics/index.html

Q6-7, turn in

