
CSSE 220 Day 19

Object-Oriented Design

Files & Exceptions

Check out FilesAndExceptions from SVN

OBJECT-ORIENTED DESIGN

A practical technique

Object-Oriented Design

• We won’t use full-scale, formal methodologies

– Those are in later SE courses

• We will practice a common object-oriented
design technique using CRC Cards

• Like any design technique,
the key to success is practice

Key Steps in Our Design Process

1. Discover classes based on
requirements

2. Determine responsibilities of each
class

3. Describe relationships between classes

Discover Classes
Based on Requirements

• Brainstorm a list of possible classes

– Anything that might work

– No squashing

Discover Classes
Based on Requirements

• Prompts:

– Look for nouns

– Multiple objects are often created from each class

• So look for plural concepts

– Consider how much detail a concept requires:

 A lot? Probably a class

 Not much? Perhaps a primitive type

• Don’t expect to find them all add as needed

Tired of hearing this yet?

Determine Responsibilities

• Look for verbs in the requirements to identify
responsibilities of your system

• Which class handles the responsibility?

• Can use CRC Cards to discover this:
– Classes

– Responsibilities

– Collaborators

CRC Cards

• Use one index card per class

Class name

Collaborators Responsibilities

CRC Card Technique

1. Pick a responsibility of the program

2. Pick a class to carry out that responsibility
– Add that responsibility to the class’s card

3. Can that class carry out the responsibility by
itself?

– Yes Return to step 1

– No
• Decide which classes should help

• List them as collaborators on the first card

• `

CRC Card Tips

• Spread the cards out on a table
– Or sticky notes on a whiteboard instead of cards

• Use a “token” to keep your place
– A quarter or a magnet

• Focus on high-level responsibilities
– Some say < 3 per card

• Keep it informal
– Rewrite cards if they get too sloppy
– Tear up mistakes
– Shuffle cards around to keep “friends” together

BREAK

Describe the Relationships

• Classes usually are related to their collaborators

• Draw a UML class diagram showing how

• Common relationships:
– Inheritance: only when subclass is a special case

– Aggregation: when one class has a field that
references another class

– Dependency: like aggregation but transient, usually
for method parameters, “has a” temporarily

– Association: any other relationship, can label the
arrow, e.g., constructs

NEW!

Summary of
UML Class Diagram Arrows

Q4

OBJECT-ORIENTED DESIGN

Draw UML class diagrams based on your CRC cards

Initially just show classes
(not insides of each)

Add insides for two classes

SOME NOTES ON
LAYOUT MANAGERS

When JFrame’s and JPanel’s defaults just don’t cut it.

Recall: How many components can a
JFrame show by default?

• Answer: 5

• We use the two-argument version of add:
• JPanel p = new JPanel();

frame.add(p, BorderLayout.SOUTH);

• JFrame’s default LayoutManager
is a BorderLayout

• LayoutManager instances
tell the Java library how to
arrange components

• BorderLayout uses up to five
components

Recall: How many components can a
JPanel show by default?

• Answer: arbitrarily many

• Additional components are added in a line

• JPanel’s default LayoutManager
is a FlowLayout

Setting the Layout Manager

• We can set the layout manager of a JPanel
manually if we don’t like the default:

JPanel panel = new JPanel();

panel.setLayout(new GridLayout(4,3));

panel.add(new JButton("1"));

panel.add(new JButton("2"));

panel.add(new JButton("3"));

panel.add(new JButton("4"));

// ...

panel.add(new JButton("0"));

panel.add(new JButton("#"));

frame.add(panel);

Lots of Layout Managers

• A LayoutManager determines how components are laid
out within a container

– BorderLayout. When adding a component, you specify center,
north, south, east, or west for its location. (Default for a JFrame.)

– FlowLayout: Components are placed left to right. When a row is
filled, start a new one. (Default for a JPanel.)

– GridLayout. All components same size, placed into a 2D grid.

– Many others are available, including BoxLayout, CardLayout,
GridBagLayout, GroupLayout

– If you use null for the LayoutManager, then you must specify
every location using coordinates

• More control, but it doesn’t resize automatically

FILES AND EXCEPTIONS

Reading & writing files

When the unexpected happens

• Look at GameOfLifeWithIO

– GameOfLife constructor has 2 listeners, two local
anonymous class

– ButtonPanel constructor has 3 listeners which are
local anonymous classes

• Feel free to use as examples for your project

Review of Anonymous Classes

• Input: File and Scanner

• Output: PrintWriter and println

• Be kind to your OS: close() all files

• Letting users choose: JFileChooser and File

• Expect the unexpected: Exception handling

• Refer to examples when you need to…

File I/O: Key Pieces

Q1-Q3

• Used to signal that something went wrong:

throw new EOFException(“Missing column”);

• Can be caught by exception handler

– Recovers from error

– Or exits gracefully

Exceptions

Q4

• Java has two sorts of exceptions

1. Checked exceptions: compiler checks that
calling code isn’t ignoring the problem
– Used for expected problems

1. Unchecked exceptions: compiler lets us ignore

these if we want
– Used for fatal or avoidable problems
– Are subclasses of RunTimeException or Error

A Checkered Past

Q5-Q6

Dealing with checked exceptions

1.Can propagate the exception

– Just declare that our method will pass any exceptions
along…

 public void loadGameState() throws IOException

– Used when our code isn’t able to rectify the problem

1.Can handle the exception

– Used when our code can rectify the problem

A Tale of Two Choices

Q7

• Use try-catch statement:
try {

 // potentially “exceptional” code

} catch (ExceptionType var) {

 // handle exception

}

• Related, try-finally for clean up:
try {

 // code that requires “clean up”

} finally {

 // runs even if exception occurred

}

Handling Exceptions

Can repeat this part
for as many different
exception types as
you need.

Q8-Q9

