
Inheritance recap
Object: the superest class of all

Inheritance and text in GUIs

 Every class in Java inherits from Object

◦ Directly and explicitly:

 public class String extends Object {…}

◦ Directly and implicitly:

 class BankAccount {…}

◦ Indirectly:

 class SavingsAccount extends BankAccount {…}

Q1

 String toString()

 boolean equals(Object otherObject)

 Class getClass()

 Object clone()

 …

Often overridden

Sometimes useful

Often dangerous!

Q2

 Return a concise, human-readable summary
of the object state

 Very useful because it’s called automatically:
◦ During string concatenation

◦ For printing

◦ In the debugger

 getClass().getName() comes in handy
here…

Q3

 Should return true when comparing two
objects of same type with same “meaning”

 How?
◦ Must check types—use instanceof

◦ Must compare state—use cast

 Example…

Q4

Review and Practice

 A subclass instance is a superclass instance
◦ Polymorphism still works!

◦ BankAccount ba = new SavingsAccount();

ba.deposit(100);

 But not the other way around!

◦ SavingsAccount sa = new BankAccount();

sa.addInterest();

 Why not?
BOOM!

 Can use:
◦ public void transfer(double amt, BankAccount o){

this.withdraw(amount);

o.deposit(amount);

}

in BankAccount

 To transfer between different accounts:
◦ SavingsAccount sa = …;

◦ CheckingAccount ca = …;

◦ sa.transfer(100, ca);

 If B extends or implements A, we can write

A x = new B();

Declared type tells which

methods x can access.

Compile-time error if try to

use method not in A.

The actual type tells which

class’ version of the

method to use.

 Can cast to recover methods from B:

((B)x).foo()

Now we can access all of

B’s methods too.

If x isn’t an instance of

B, it gives a run-time

error (class cast

exception)

Q5-7, hand in when done

• Single Person Project (since
you can work on it over
break)

• Ask questions (instructor and
TAs).

• Work on Ball Worlds or Linear
Lights Out

Pulsar, Mover, etc.

