
Interfaces and Event Based Programming

Check out EventBasedProgramming from SVN



 Interfaces

 Event Listeners

 Java Swing



 Express common operations that multiple 
classes might have in common

 Make “client” code more reusable

 Provide method signatures and 
documentation

 Do NOT provide method implementations or 
fields

Q1&2



 Interface types are like contracts

◦ A class can promise to implement an interface

 That is, implement every method

◦ Client code knows that the class will have those 
methods

 Compiler verifies this

◦ Any client code designed to use the interface type 
can automatically use the class!

Q3





Charges Demo



Distinguishes 
interfaces 

from classes

Hollow, 
closed 

triangular 
tip means 

PointCharge
is a Charge

Q4



public interface Charge {
/**
*  regular javadocs here
*/
Vector forceAt(int x, int y);

/**
*  regular javadocs here
*/
void drawOn(Graphics2D g);

}

public class PointCharge implements Charge {
…

}

interface, not class

No method 
body, just a 
semi-colon

No “public”, 
automatically 

are so

PointCharge promises to implement all the 
methods declared in the Charge interface Q5



Interfaces reduce coupling!



 Can pass an instance of a class where an 
interface type is expected
◦ But only if the class implements the interface

 We passed LinearCharges to Space’s 
addCharge(Charge c) method without 
changing Space!

 Use interface types for field, method 
parameter, and return types whenever 
possible

Q6



 Origin:
◦ Poly  many

◦ Morphism  shape

 Classes implementing an interface give many 
differently “shaped” objects for the interface 
type

 Late Binding: choosing the right method 
based on the actual type of the implicit 
parameter at run time



 Charge c = new PointCharge(…);
Vector v1 = c.forceAt(…);
c = new LinearCharge(…);
Vector v2 = c.forceAt(…);

 The type of the actual object determines the 
method used.





 We say what to draw

 Java windowing library:
◦ Draws it

◦ Gets user input

◦ Calls back to us with events

 We handle events



 Many kinds of events:
◦ Mouse pressed, mouse released, mouse moved, 

mouse clicked, button clicked, key pressed, menu 
item selected, …

 We create event listener objects
◦ that implement the right interface

◦ that handle the event as we wish

 We register our listener with an event source
◦ Sources: buttons, menu items, graphics area, …

Q7



 Classes can be defined inside other classes or 
methods

 Used for “smallish” helper classes

 Example: Ellipse2D.Double

 Often used for ActionListeners…

Outer class Inner class

Q8



 Inner classes can access any variables in 
surrounding scope

 Caveats:
◦ Local variables must be final

◦ Can only use instance fields of surrounding scope if 
we’re inside an instance method

 Example: 
◦ Prompt user for what porridge tastes like



 Sometimes very small helper classes are only 
used once
◦ This is a job for an anonymous class!

 Anonymous  no name

 A special case of inner classes

 Used for the simplest ActionListeners…



Layout in Java windows



 JFrame’s add(Component c) method
◦ Adds a new component to be drawn

◦ Throws out the old one!

 JFrame also has method 
add(Component c, Object constraint)
◦ Typical constraints:

 BorderLayout.NORTH, BorderLayout.CENTER

◦ Can add one thing to each “direction”, plus center

 JPanel is a container (a thing!) that can display 
multiple components

Q9-10



So, how do we do this?



 To update graphics:
◦ We tell Java library that we need to be redrawn:

 space.repaint()

◦ Library calls paintComponent() when it’s ready

 Don’t call paintComponent() yourself!  It’s 
just there for Java’s call back.

Q11



public interface MouseListener {

public void mouseClicked(MouseEvent e);

public void mouseEntered(MouseEvent e);

public void mouseExited(MouseEvent e);

public void mousePressed(MouseEvent e);

public void mouseReleased(MouseEvent e);

}

Q12



Linear Lights Out


