
CSSE 220 Day 13

Encapsulation

Coupling and Cohesion
Scoping

Please download EncapsulationExamples from your SVN

The plan

• Learn 3 essential object oriented design
terms:

– Encapsulation

– Coupling

– Cohesion

• Scope (if we have time)

What if there was no String class?

• Instead, what if we just passed around arrays
of characters - char[]

• And every String function that exists now,
would instead be a function that operated on
arrays of characters

• E.g. char[] stringSubstring(char[] input, int
start, int end)

• Would things be any different? Discuss this
with the person next to you.

The Point of All Program Design

• Say you’ve somebody has written a program,
and it works and it has no bugs, but it is poorly
designed. What does that mean? Why do we
care?

• I think there are two things

Encapsulation

• Mikes definition “grouping some data and the
operations that use that data into one thing
(an object) and preventing that data from
being changed except by using those
operations”

Encapsulation

• Makes your program easier to understand by

– Grouping related stuff together

Encapsulation

• Makes your program easier to understand by…

– Saving you from having to think about how
complicated things might be

Using put and get in HashMap

Implementing HashMap

http://www.google.com/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&docid=i4WVqDixXRt6hM&tbnid=zUYpDqTbbC0tvM:&ved=0CAUQjRw&url=http://blackbeltbartending.com/?p%3D31&ei=3VK3UuXUBYTfsAS2uoKwAg&bvm=bv.58187178,d.eW0&psig=AFQjCNHxM327zEzthDBxAv0ucKsLkfnX_g&ust=1387832401396704
http://www.google.com/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&docid=i4WVqDixXRt6hM&tbnid=zUYpDqTbbC0tvM:&ved=0CAUQjRw&url=http://blackbeltbartending.com/?p%3D31&ei=3VK3UuXUBYTfsAS2uoKwAg&bvm=bv.58187178,d.eW0&psig=AFQjCNHxM327zEzthDBxAv0ucKsLkfnX_g&ust=1387832401396704

Encapsulation

Makes your program easier to change by…

• Allowing you to change how your data is
represented

City Temperature Activity

• I will split you into two groups

– One group will solve the problem by creating a
new class (see the Class Section example if you are
unsure how to do that)

– The other group will just write the code in main
(see the Letters Example if you are unsure how to
do that)

• If you finish early, try to solve it the other way
too

Recall

• Shows the:
– Attributes

(data, called fields
in Java) and

– Operations
(functions, called
methods in Java)

of the objects of a class

• Does not show the
implementation

• Is not necessarily
complete

String

data: char[]

boolean contains(String s)

boolean endsWith(String suffix)

int indexOf(String s)

int length()

String replace(String target,
 String replace)

String substring(int begin,
 int end)

String toLowerCase()

Class name

Fields

Methods

TwoVsTwo

• Look at the code to understand the problem

• Try to solve it using classes and encapsulation
- Decide what classes/methods you would use
(I used two new classes and TwoVsTwo main)

• Draw UML for the classes/methods

• Don’t start coding till I or the TA have looked
at your classes!

The plan

• Learn 3 essential object oriented design
terms:

– Encapsulation

– Coupling

– Cohesion

• Scope (if we have time)

Coupling and Cohesion

• Two terms you need to memorize

• Good designs have high cohesion and low
coupling

At a very high level:

• Low cohesion means that you have a small
number of really large classes that do too
much stuff

• High coupling means you have many classes
which depend too much on each other

Imagine I want to make a Video Game.
Here are two classes in my design.

Which is more cohesive?

GameRunner

main(args:String)
loadLevel(levelName:String)
moveEnemies()
drawLevel(g:Graphics2D)
computeScore():int
computeEnemyDamage()
handlePlayerInput()
doPowerups(…)
runCutscene(cutsceneName:String)
//some more stuff

Image

loadImageFile(filename:String)
setPosition(x:int,y:int)
drawImage(g:Graphics2D)

*Note that in both these classes I’ve omitted the fields for clarity

Cohesion

• A class should represent a single concept. All
interface features should be closely related to
the single concept that the class represents.
Such a class is said to be cohesive.

 - Your textbook

Types of Cohesion

 Low Cohesion Spectrum High

“Single-Minded” “Pathological”

Coincidental

Logical

Temporal

Procedural

Communicational Functional

Measure of how related or focused the responsibilities of a single class are

Coincidental: multiple, completely unrelated actions or components

Logical: series of related actions or components (e.g. library of IO

functions)

Temporal: series of actions related in time (e.g. initialization modules)

Procedural: series of actions sharing sequences of steps.

Communicational: procedural cohesion but on the same data.

Functional: one action or function

• When one class requires another class to do its
job, the first class depends on the second

• Shown on UML
diagrams as:

– dashed line

– with open arrowhead

Dependency Relationship

CSSE_Freshmen

void add(ArrayList<Student> students)
…

Student

string getFreshmen()

The plan

• Learn 3 essential object oriented design
terms:

– Encapsulation

– Coupling

– Cohesion

• Scope (if we have time)

Coupling

//do setup must be called first

this.otherObject.doSetup(var1, var2, var3);

//now we compute the parameter

int var4 = computeForOtherObject(var1,var2);

this.otherObject.setAdditionalParameter(var4);

//finally we display

this.otherObject.doDisplay(this.var5, this.var6);

• Coupling is one object depends strongly on another

Note that in this design, GameRunner probably had
many objects of the image class, but Image does not

know the GameRunner class even exists. That’s a sign
of low coupling between Image and GameRunner.

GameRunner

main(args:String)
loadLevel(levelName:String)
moveEnemies()
drawLevel(g:Graphics2D)
computeScore():int
computeEnemyDamage()
handlePlayerInput()
doPowerups(…)
runCutscene(cutsceneName:String)
//some more stuff

Image

loadImageFile(filename:String)
setPosition(x:int,y:int)
drawImage(g:Graphics2D)

• Lot’s of dependencies high coupling

• Few dependencies low coupling

Coupling

Types of Coupling

Low Coupling Spectrum High

No Direct Coupling

Data Coupling

Stamp Coupling

Control Coupling

External

Common Coupling

Content

Measure of the interdependence among software components

Content: one component directly references the content of another

Common: both components have access to the same global data

Control: One component passes the element of control to another

Stamp: Two components modify or access data in the same object

Data: One component passes simple data to another as an argument

If we do our design job carefully

• We will break our larger problem into several
classes

• Each of these classes will do one kind of thing
(i.e. they will have high cohesion)

• Our classes will only need to depend on each
other in specific, highly limited ways (i.e. they
will have low coupling). Many classes won’t
even be aware of most of the other classes in
the system.

Imagine that you’re writing code to
manage a school’s students

Things your design should accommodate:
• Handle adding or removing students from the school
• Setting the name, phone number, and GPA for a

particular student
• Compute the average GPA of all the students in the

school
• Sort the students by last name to print out a report of

students and GPA
Discuss and come up with a design with those nearby
you. How many classes does you system need?

Note that

• Cohesion will tend to want us to make many
smaller classes, each of which will do only one
thing

• But if the classes are too small, they’ll tend to
need to depend on each other to do work,
and the coupling will get bad

Hints #1 for Designing Objects

• Look for the nouns in your problem, consider
making them objects

• Keep any one objects from getting too “fat” –
containing too many methods or fields

• Avoid Plural Nouns

• Avoid Parallel Structures

The plan

• Learn 3 essential object oriented design
terms:

– Encapsulation

– Coupling

– Cohesion

• Scope (if we have time)

Scope is the region of a program in
which a variable can be accessed

• Parameter scope: the whole method body

• Local variable scope: from declaration to block end

public double myMethod() {
 double sum = 0.0;
 Point2D prev = this.pts.get(this.pts.size() - 1);
 for (Point2D p : this.pts) {
 sum += prev.getX() * p.getY();
 sum -= prev.getY() * p.getX();
 prev = p;
 }
 return Math.abs(sum / 2.0);
}

Variable Scope

• Please take 15 seconds and think about it

• Turn to neighbor and discuss it for a minute

• Then let’s talk?

Why do you suppose scoping exists?
What happens if two variables have the
same name in the same code location?

http://www.google.com/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&docid=EDVBJBfLlAHT2M&tbnid=naHgZu_LhwwUAM:&ved=0CAUQjRw&url=http://psdblast.com/stopwatch-icon-psd&ei=IV_KUsWPIcfIyAG07YDACw&psig=AFQjCNFZrWog4vdCM_-TObjXWD7KJd1l9A&ust=1389080717457367

• Member scope: anywhere in
the class, including before its
declaration
– Lets methods call other methods

later in the class

• public static class
members can be accessed
from outside with “class
qualified names”
– Math.sqrt()

– System.in

Member Scope (Field or Method)

Class MyClass {

 . . .

 // member variable declarations

 . . .

 public void aMethod(params…) {

 . . .

 // local variable declarations

 . . .

 for(int i = 0; i < 10; i++)

 {. . . }

 . . .

 }

 . . .

}

Member Variable
Scope

Method
Parameter

Scope

Local Variable
Scope

Block scope

Overlapping Scope and Shadowing

public class TempReading {
 private double temp;

 public void setTemp(double temp) {
 … temp …

 }
 // …
}

 this.temp = temp;

What does this
“temp” refer to?

Always qualify field references with
this. It prevents accidental

shadowing.

What you have learned

• Learn 3 essential object oriented design
terms:

– Encapsulation

– Coupling

– Cohesion

• Scope (if we have time)

