
How do EBTs help use analyze BST search?
What is a recurrence relation?

After today, you should be able to…
…explain what an extended binary tree is
…solve simple recurrences using patterns

} Today:
◦ Extended Binary Trees (on HW9)

◦ Average-case analysis of successful search on a (naïve) BST

◦ Recurrence relations, part 1

} GraphSurfing Milestone 2
◦ Two additional methods: shortestPath(T start, T end) and

stronglyConnectedComponent(T key)
◦ Tests on Living People subgraph of Wikipedia hyperlinks

graph
◦ Bonus problem: find a “challenge pair”

� Pair with as-long-as-possible shortest path

Bringing new life to Null
nodes!

} Not a single NULL_NODE, but many NULL_NODEs

} An Extended Binary tree is either
◦ an external (null) node, or
◦ an (internal) root node and two

EBTs TL and TR, that is, all nodes have 2 children

} Convention.
◦ Internal nodes are circles
◦ External nodes are squares

} This is simply an alternative way of viewing binary trees:
external nodes are “places” where a search can end or an
element can be inserted – for a BST, what legal values
could eventually be inserted at an external node?

1-2

} Property P(N): For any N ≥ 0, any EBT with N
internal nodes has _______ external nodes.

} Use example trees below to come up with a
formula, let:
◦ EN(T) = external nodes
◦ IN(T) = internal nodes

3-5

} Property P(N): For any N ≥ 0, any EBT with N
internal nodes has N+1 external nodes.

} Prove by strong induction, based on the
recursive definition.
◦ A notation for this problem: IN(T), EN(T)

3

Hint (reminder): Find a way to
relate the properties for larger
trees to the property for smaller
trees.

} Define internal path length: the sum of depths
of internal nodes in an EBT.

} How does it relate to the average-case running
time of successful search on a BST?

3

80

8 120

50(–∞,8)

(8,50) (50,80)

90

(80,90) (90,120)

(120, ∞)

80

8

50

120

90

IPL = 0 + 1 + 1 + 2 + 2 = 6

1 1

2 2

0
BST:EBT:

} Idea: find expected IPL(T), for a tree T of size N.
◦ Key point: How does IPL(T) relate to IPL(TL) and IPL(TR)?

◦ Take expected value of both sides

} Then, expected runtime of successful search is
[expected IPL] / N.

TL TR

IPL(T) = N – 1 + IPL(TL) + IPL(TR)

4

A technique for analyzing
recursive algorithms

} Split the sequence in half
} Where can the maximum subsequence appear?

} Three possibilities :
◦ entirely in the first half,
◦ entirely in the second half, or
◦ begins in the first half and ends in the second half

5

1. Using recursion, find the maximum sum of
first half of sequence

2. Using recursion, find the maximum sum of
second half of sequence

3. Compute the max of all sums that begin in
the first half and end in the second half
◦ (Use a couple of loops for this)

4. Choose the largest of these three numbers

What’s the
run-time?

6

N = array size

Runtime =
Recursive part +
non-recursive part

7

} Write a Recurrence Relation
◦ T(N) gives the run-time

as a function of N
◦ Two (or more) part definition:
� Base case,

like T(1) = c
� Recursive case,

like T(N) = T(N/2) + 1

So, what’s the recurrence relation
for the recursive MCSS algorithm?

8

T(n) = aT(n/b) + f(n)
} a = # of subproblems
} n/b = size of subproblem
} f(n) = D(n) + C(n)
} D(n) = time to divide problem before recursion
} C(n) = time to combine after recursion

9

Runtime =
Recursive part +
non-recursive part

T(N) =
2T(N/2) + q(N)

9

Runtime =
Recursive part +
non-recursive part

T(1) = 1

} An equation (or inequality) that relates the
nth element of a sequence to certain of its
predecessors (recursive case)

} Includes an initial condition (base case)
} Solution: A function of n.

} Similar to differential equation, but discrete
instead of continuous

} Some solution techniques are similar to
diff. eq. solution techniques

} One strategy: look for patterns
◦ Forward substitution
◦ Backward substitution

} Examples:
As class:
1. T(0) = 0, T(N) = 2 + T(N-1)
2. T(0) = 1, T(N) = 2 T(N-1)
3. T(0) = 0, T(1) = 1, T(N) = T(N-2) + T(N-1)

On quiz:
1. T(0) = 1, T(N) = N T(N-1)
2. T(0) = 0, T(N) = T(N -1) + N
3. T(1) = 1, T(N) = 2 T(N/2) + N

(just consider the cases where N=2k)

10–12

} Find patterns
} Telescoping
} Recurrence trees
} The master theorem

13-14

