
Hash Table Analysis

When do hash tables degrade in performance?
How should we set the maximum load factor?

“It is especially important to know the average
behavior of a hashing method, because we are
committed to trusting in the laws of probability
whenever we hash. The worst case of these
algorithms is almost unthinkably bad, so we
need to be reassured that the average is very
good.”

—Donald Knuth,
The Art of Computer Programming, Vol 3:

Searching and Sorting

§ [Last time] Designing appropriate hashCode
functions
§ Should “scatter” similar objects
§ E.g., for Strings: x = 31x + y pattern
§ “Interpret string as a number base 31”

§ [Continued today] Collision resolution: two
basic strategies
§ Separate chaining
§ Probing (open addressing)

hashCode()“rose”à modà 3506511 à à 11 rose

…
10
11
12
…

Reminder: to avoid O(n) performance, set a maximum load factor
(l=n/m) where we double the array and re-hash.

Default for Java HashMap: 0.75
Under “normal circumstances”, this achieves O(1) search and
amortized O(1) insert/delete.

http://hg.openjdk.java.net/jdk8/jdk8/jdk/file/687fd7c7986d/src/share/classes/java/util/HashMap.java

§ At each value for max load factor, ran 32
experiments
§ Each added a random number <216 of items to an

initially empty HashSet

0

50

100

150

200

250

300

350

400

450

500

0.0625 0.125 0.25 0.5 1 2 4 8 16 32 64

Ti
m

e
(m

se
c)

Max load factor

§ No need to grow in second direction

§ No memory required for pointers
§ Historically, this was important!
§ Still is for some data…

§ Will still need an appropriate max load factor
or else collisions degrade performance
§ We’ll grow the array again

§ Probe H (see if it causes a collision)
§ Collision? Also probe the next available space:

§ Try H, H+1, H+2, H+3, …
§ Wraparound at the end of the array

§ Example on board: .add() and .get()

§ Problem: Clustering

§ Animation:
§ http://www.cs.auckland.ac.nz/software/AlgAnim/hash_table

s.html
§ Applet deprecated on most browsers
§ Moodle has a video captured from there
§ Or see next slide for a few freeze-frames.

http://www.cs.auckland.ac.nz/software/AlgAnim/hash_tables.html

} For probing to work, 0 £ l £ 1.

§ For a given l, what is the expected number
of probes before an empty location is found?

§ Assume all locations are equally likely to be
occupied, and hashed to.

§ l is the probability that a given cell is full, 1-
l the probability a given cell is empty.

§ What’s the expected number of probes to
find an open location?

4

From https://en.wikipedia.org/wiki/List_of_mathematical_series:

If l = 0.5
Then !

! " #.%
= 2

§ Clustering! Blocks of neighboring occupied
cells
§ Much more likely to insert adjacent to a cluster
§ Clusters tend to grow together (avalanche effect)

§ Actual average number of probes for large l:

For a proof, see Knuth, The Art of Computer Programming, Vol 3:
Searching and Sorting, 2nd ed, Addision-Wesley, Reading, MA,
1998. (1st edition = 1968)

4

§ Easy to implement
§ Works well when load factor is low
§ In practice, once l > 0.5, we usually double the size

of the array and rehash
§ This is more efficient than letting the load factor

get high
§ Works well with caching

§ Reminder: Linear probing:
§ Collision at H? Try H, H+1, H+2, H+3,...

§ New: Quadratic probing:
§ Collision at H? Try H, H+12. H+22, H+32, ...
§ Eliminates primary clustering. “Secondary clustering”

isn’t as problematic

§ But, new problem: are we guaranteed to find open cells?
§ Try with

§ m=16, H=6.
§ m=17, H=6.

5

§ Claim. If m is prime, then the following are unique:
𝐻 + 𝑖! mod𝑚 for 𝑖 = 0,1,2, … , 𝑚/2

§ Implication. Using prime table size m, and λ ≤ 0.5,
then quadratic probing guarantees
§ Insertion within 𝑚/2 + 1 non-repeated probes
§ Unsuccessful search within 𝑚/2 + 1 non-repeated probes

§ E.g. m=17, H=6: works as long as λ ≤ 0.5 (n ≤ 8)

6–7

For a proof, see Theorem 20.4:
Suppose the table size is prime, and that we repeat a probe
before trying more than half the slots in the table
See that this leads to a contradiction

Use an algebraic tricks to calculate next index
§ Difference between successive probes yields:

§ Probe i location, Hi = (Hi-1 + 2i – 1) % M

§ Just use bit shift to multiply i by 2
§ probeLoc= probeLoc + (i << 1) - 1;
…faster than multiplication

§ Since i is at most M/2, can just check:
§ if (probeLoc >= M)

probeLoc -= M;
…faster than mod

When growing array, can’t double!
§ Can use, e.g., BigInteger.nextProbablePrime()

§ No one has been able to analyze it!
§ Experimental data shows that it works well
§ Provided that the array size is prime, and l < 0.5

§ We have been presenting Java’s
implementation

§ In Python’s implementation, the designers
made some different choices
§ Uses probing, but not linear or quadratic: instead,

uses a variant of a linear congruential generator
using the recurrence relation

H = 5H+1 << perturb
Implementation, Explanation, Wikipedia on LCGs

§ Also uses 1000003 (also prime) instead of 31 for
the String hash function

http://svn.python.org/projects/python/trunk/Objects/dictobject.c
https://www.laurentluce.com/posts/python-dictionary-implementation/
https://en.wikipedia.org/wiki/Linear_congruential_generator

8

§ Finish the quiz.
§ Then check your answers with the next slide

Structure insert Find value Find max value
Unsorted array
Sorted array
Balanced BST
Hash table

Structure insert Find value Find max value
Unsorted array Amortized q(1)

Worst q(n)
q(n) q(n)

Sorted array q(n) q(log n) q(1)
Balanced BST q(log n) q(log n) q(log n)
Hash table Amortized q(1)

Worst q(n)
q(1) q(n)

§ Constants matter!

§ 727MB data, ~190M elements
§ Many inserts, followed by many finds
§ Microsoft's C++ STL

§ Why?
§ Sorted arrays are nice if they don’t have to be

updated frequently!
§ Trees still better when interleaved insert/find

Structure build (seconds) Size (MB) 100k finds (seconds)
Hash map 22 6,150 24
Tree map 114 3,500 127
Sorted array 17 727 25

§ Why use 31 and not 256 as a base in the
String hash function?

§ Consider chaining, linear probing, and
quadratic probing.
§ What is the purpose of all of these?
§ For which can the load factor go over 1?
§ For which should the table size be prime to avoid

probing the same cell twice?
§ For which is the table size a power of 2?
§ For which is clustering a major problem?
§ For which must we grow the array and rehash every

element when the load factor is high?

