

CSSE 230 Day 2

Growable Arrays Continued
Big-O notation

Submit Growable Array exercise

Agenda and goals

- Growable Array recap
- Big-Oh definition
- After today, you'll be able to
 - Use the term amortized appropriately in analysis
 - State the formal definition of big-Oh notation

Iterative Code Analysis Examples

How many times does sum++ run?

```
for (i = 4; i < n; i++)

for (j = 0; j <= n; j++)

sum++;
```

Why is this one so easy?

What if inner were for $(j = 0; j \le \frac{1}{2}; j++)$?

Iterative Code Analysis Examples

How many times does sum++ run?

```
for (i = 1; i <= n; i *= 2)
sum++;
```

Be precise, using floor/ceiling as needed, to get full credit.

Questions?

- About Homework 1?
 - Aim to complete ASAP, since it is due after next class
 - It is substantial
 - The last problem (the table) is worth lots of points!
- About the Syllabus?

Warm Up and Stretching thoughts

- Short but intense! ~50 lines of code total in our solutions
- Be sure to read the description of how it will be graded. Note how style will be graded.
- Demo: Use Git to check out the project
- Demo: Running the JUnit tests for test, file, package, and project

Growable Arrays Exercise

Solution

Worst-case vs amortized cost for adding an element to an array using the doubling scheme

Note: amortized is not the same as average case!

- average case: averaged over input domain.
- amortized cost: per-operation cost when undergoing a sequence of operations.

Conclusions

- What's the amortized and worst-case costs of adding an additional string...
 - in the doubling strategy?
 - in the add-one strategy?
- For which strategy is amortized analysis meaningful?
 - "When ...a worst-case bound for a sequence of operations is better than the corresponding bound obtained by considering each operation separately and can be spread evenly to each operation in the sequence..." —Weiss, p.845
 - I.e., when amortized runtime is better than worst-case runtime
- Are there any hypothetical cases where we would prefer the slower strategy?

Algorithm Analysis: Running Time

Running Times

- Algorithms may have different time complexity on different data sets
- What do we mean by "Worst Case"?
- What do we mean by "Average Case"?
- What are some application domains where knowing the Worst Case time complexity would be important?
- http://cacm.acm.org/magazines/2013/2/160173-the-tailat-scale/fulltext

Average Case and Worst Case

Note: amortized is not the same as average case!

- average case: averaged over input domain. "Expected runtime"
- amortized cost: per-operation cost when undergoing a sequence of operations. "Guaranteed runtime, when amortized to a per-operation basis"

Notation for Asymptotic Analysis

Big-O

Asymptotic Analysis

- Rule of thumb: we only care what happens as N (input size) gets large
- Is the runtime linear? quadratic? exponential? in N

Figure 5.1
Running times for small inputs

Figure 5.2
Running times for moderate inputs

Figure 5.3 Functions in order of increasing growth rate

FUNCTION	Name	
С	Constant	The answer to most big-O
$\log N$	Logarithmic	questions is one of these
$\log^2 N$	Log-squared	functions
N	Linear	
$N \log N$	N log N ←	a.k.a "log linear"
N^{2}	Quadratic	
N^3	Cubic	
2^N	Exponential	

Simple Rule for Big-O (informal)

Drop lower order terms and constant factors

- > 7n − 3 is O(n)
- \triangleright 8n²logn + 5n² + n is O(n²logn)

Formal Definition of Big-O

- Given functions f(n) and g(n), we say that f(n) is O(g(n)) if and only if there exist constants c > 0 and $n_0 \ge 0$ such that $f(n) \le c g(n)$ for all $n \ge n_0$.
- For this to make sense, f(n) and g(n) should be functions over non-negative integers, and f(n), $g(n) \ge 0$ on this range.

More formally: "f(n) is in O(g(n))".

O(g(n)) is actually a *set* (of what?)

Proving a Big-O relationship

- f(n) is O(g(n)) if there exist two positive constants c and n_0 such that $f(n) \le c g(n)$ for all $n \ge n_0$.
- Q: How to prove that f(n) is O(g(n))? A: Give c and n_0 and show the condition holds.
- Ex1: f(n) = 4n + 15. g(n) = ???
- Ex2: $f(n) = 5n^2 + 2n 4$. g(n) = ???