CSSE 230 Day 2

Growable Arrays Continued Big-O notation

Submit Growable Array exercise

Agenda and goals

- Growable Array recap
- Big-Oh definition
- After today, you'll be able to
- Use the term amortized appropriately in analysis
- State the formal definition of big-Oh notation

Iterative Code Analysis Examples

How many times does sum++ run?

$$
\begin{gathered}
\text { for }(i=4 ; i<n ; i++) \\
\text { for }(j=0 ; j<=n ; j++) \\
\text { sum++; }
\end{gathered}
$$

Why is this one so easy?
What if inner were for ($j=0$; $j<=i ; j++$) ?

Iterative Code Analysis Examples

How many times does sum++ run?

$$
\begin{aligned}
& \text { for }(i=1 ; i<=n ; i *=2) \\
& \text { sum }++;
\end{aligned}
$$

Be precise, using floor/ceiling as needed, to get full credit.

Questions?

- About Homework 1?
- Aim to complete ASAP, since it is due after next class
- It is substantial
- The last problem (the table) is worth lots of points!
- About the Syllabus?

Warm Up and Stretching thoughts

- Short but intense! ~50 lines of code total in our solutions
- Be sure to read the description of how it will be graded. Note how style will be graded.
- Demo: Use Git to check out the project
- Demo: Running the JUnit tests for test, file, package, and project

Growable Arrays Exercise

Solution

Worst-case vs amortized cost for adding an element to an array using the doubling scheme

Worst-case:

O(n)

Note: amortized is not the same as average case!

- average case: averaged over input domain.
- amortized cost: per-operation cost when undergoing a sequence of operations.

Conclusions

- What's the amortized and worst-case costs of adding an additional string...
- in the doubling strategy?
- in the add-one strategy?
- For which strategy is amortized analysis meaningful?
- "When ...a worst-case bound for a sequence of operations is better than the corresponding bound obtained by considering each operation separately and can be spread evenly to each operation in the sequence..." -Weiss, p. 845
- I.e., when amortized runtime is better than worst-case runtime
- Are there any hypothetical cases where we would prefer the slower strategy?

Algorithm Analysis: Running Time

Running Times

- Algorithms may have different time complexity on different data sets
- What do we mean by "Worst Case"?
- What do we mean by "Average Case"?
- What are some application domains where knowing the Worst Case time complexity would be important?
- http://cacm.acm.org/magazines/2013/2/160173-the-tail-at-scale/fulltext

Average Case and Worst Case

Note: amortized is not the same as average case!

- average case: averaged over input domain. "Expected runtime"
- amortized cost: per-operation cost when undergoing a sequence of operations. "Guaranteed runtime, when amortized to a per-operation basis"

Notation for Asymptotic Analysis

Big-O

Asymptotic Analysis

- Rule of thumb: we only care what happens as N (input size) gets large
- Is the runtime linear? quadratic? exponential? in N

Figure 5.1

Running times for small inputs

Figure 5.2

Running times for moderate inputs

Figure 5.3

Functions in order of increasing growth rate

Function	Name	
c	Constant	The answer to most big-O
$\log N$	Logarithmic	questions is one of these
$\log ^{2} N$	log-squared	functions
N	linear	
$N \log N$	Q $\log N$	a.k.a "log linear"
N^{2}	Cubadratic	
N^{3}	Exponential	
2^{N}		

Simple Rule for Big-O (informal)

- Drop lower order terms and constant factors
- $7 n-3$ is $O(n)$
- $8 n^{2} \log n+5 n^{2}+n$ is $O\left(n^{2} \log n\right)$

Formal Definition of Big-O

- Given functions $f(n)$ and $g(n)$, we say that $f(n)$ is $O(g(n))$ if and only if there exist constants $c>0$ and $n_{0} \geq 0$ such that

$$
f(n) \leq c g(n) \text { for all } n \geq n_{0} .
$$

- For this to make sense, $f(n)$ and $g(n)$ should be functions over non-negative integers, and $f(n), g(n) \geq 0$ on this range.

More formally: " $f(n)$ is in $O(g(n))$ ".
$O(g(n))$ is actually a set (of what?)

Proving a Big-O relationship

- $f(n)$ is $O(g(n))$ if there exist two positive constants c and n_{0} such that $f(n) \leq c g(n)$ for all $n \geq n_{0}$.
- Q: How to prove that $\mathrm{f}(\mathrm{n})$ is $\mathrm{O}(\mathrm{g}(\mathrm{n})$)? A: Give c and n_{0} and show the condition holds.
- Ex1: $f(n)=4 n+15 . \quad g(n)=? ? ?$
- Ex2: $f(n)=5 n^{2}+2 n-4 . \quad g(n)=? ? ?$

