
Priority Queues
Heaps

After this lesson, you should be able to …
… apply the binary heap insertion and deletion algorithms by hand
… implement the binary heap insertion and deletion algorithms

§ Format same as Exam 1 (written and programming)
§ One 8.5x11 sheet of paper (one side) for written part
§ Same resources as before for programming part

§ Topics: weeks 1-7
§ Through day 21, HW7, and EditorTrees milestone 3
§ Especially Binary trees, including BST, AVL, indexed

(EditorTrees), red-black*
§ Traversals and iterators, size vs. height, rank
§ Recursive methods, including ones that should only touch

each node once for efficiency (like sum of heights and
isHeightBalanced from HW5)

§ Hash tables
§ Heaps – basic concepts (we won’t ask you to write code yet)

§ Practice exam posted in Moodle and code in repos
§ * Red-black tree coverage depends on instructor

Basic operations
Implementation options

§ Each element in the PQ has an associated
priority
§ Could be specified (extra parameter) when an item

is inserted into the PQ: insert(item, priority)
§ More commonly, priority is inferred from the

comparable type (in our examples, an integer).
§ Operations:
§ insert(item) (also called add/offer)

§ findMin()
§ deleteMin() (also called remove/poll)

§ isEmpty() …

§ Can we reasonably implement PQ using data
structures that we already know about?
§ Array?
§ Sorted array?
§ AVL?

§ One efficient approach uses a binary heap
§ A complete binary tree that is ordered in a special way

§ Questions we'll ask:
§ How can we efficiently represent a complete binary

tree?
§ Can we add and remove items efficiently without

destroying the "heapness" of the structure?

0

An efficient implementation of
the PriorityQueue ADT

Storage (an array)

Algorithms for insertion and
deleteMin

Figure 21.1
A complete binary tree and its array representation

Data Structures & Problem Solving using JAVA/2E Mark Allen Weiss © 2002 Addison Wesley

Array: How to find the children
or the parent of a node?

Notice the
lack of
explicit
pointers in
the array

“complete”
is not a
completely
standard
term

One "wasted"
array position (0)

1

Data Structures & Problem Solving using JAVA/2E Mark Allen Weiss © 2002 Addison Wesley

A Binary (min) Heap is a
complete Binary Tree (using
the array implementation, as
on the previous slide) that
has the heap-order property
everywhere.

Q: In a binary heap, where do we find
§ The smallest element?
§ 2nd smallest?
§ 3rd smallest?

2-3

Fill in the array with values from the min-heap
§ Heap size = # items in the heap
§ Array capacity = size of the array

Idea of each:
1. Get the structure right first
§ Insert at end (bottom of tree)
§ Move the last element to the root after deleting the

root
2. Restore the heap-order property by percolating
(swapping an element/child pair)
§ Insert by percolating up: swap with parent
§ DeleteMin by percolating down: swap with child with min

value

Nice demo:
http://www.cs.usfca.edu/~galles/visualization/Heap.html

http://www.cs.usfca.edu/~galles/visualization/Heap.html

Figure 21.7
Attempt to insert 14, creating the hole and bubbling the hole up

Data Structures & Problem Solving using JAVA/2E Mark Allen Weiss © 2002 Addison Wesley

Create a "hole" where 14 can be inserted.
Percolate up!

Recall that the
actual data
movement is
done by array
manipulation

Figure 21.8
The remaining two steps required to insert 14 in the original heap shown in
Figure 21.7

Data Structures & Problem Solving using JAVA/2E Mark Allen Weiss © 2002 Addison Wesley

Analysis of
insertion …

4

4-5

Your turn:
1. Draw an empty array representation
2. Insert into an initially empty heap: 6 4 8 1 5 3 2 7

Figure 21.10 Creation of the hole at the root

Data Structures & Problem Solving using JAVA/2E Mark Allen Weiss © 2002 Addison Wesley

The min is at the root. Delete it, then use the percolateDown
algorithm to find the correct place for its replacement.

We must decide which child to promote, to make room for 31.

Figure 21.11
The next two steps in the deleteMin operation

Data Structures & Problem Solving using JAVA/2E Mark Allen Weiss © 2002 Addison Wesley

Figure 21.12
The last two steps in the deleteMin operation

Data Structures & Problem Solving using JAVA/2E Mark Allen Weiss © 2002 Addison Wesley

6

Compare node to its children, moving
root down and promoting the smaller
child until proper place is found.

We’ll re-use
percolateDown
in HeapSort

6-7

Idea of each:
1. Get the structure right first
§ Insert at end (bottom of tree)
§ Move the last element to the root after deleting the

root
2. Restore the heap-order property by percolating
(swapping an element/child pair)
§ Insert by percolating up: swap with parent
§ Delete by percolating down: swap with child with min value

§ Worst case times:
§ findMin: O(1)
§ insert: amortized O(log n), worst O(n)
§ deleteMin O(log n)

§ Big-O (amortized) times for insert/delete are
the same as for balanced BSTs, but ..
§ Heap operations are much simpler to write.
§ A heap doesn’t require additional space for

pointers, balance codes or R-B colors, etc.
§ BinaryHeap findMin is faster.

8-10

