A
I

T CSSE 230 Day 5

E

T Abstract Data Types

Data Structure “Grand Tour”

Java Collections
AR

LI1T] LT

HOOY

G

http://gcc.gnu.org/onlinedocs/libstdc++/images/pbds_different_underlying_dss_1.png

Announcements

» Stacks and Queues
> |ldeally, you have met with your partner to start

> Try your best to work well together, even if you
have different amounts of programming
experience.
Suggestion: Let the weaker programmer do most of
the driving

» Finish day 4 + quiz with instructor if needed.

» Exam 1: next Thursday, 7-9pm. More info
next class.

Homework 2 tips

» From question 3:

Suppose T;(N) is O(f(N)) and T,(N) is O(f(N)).
Prove that T,(N) + T,(N) is O(f(N)) or give a counter-example.

> Hint: Supposing T,(N) and T,(N) are O(f(N)), that means
there exist constants ¢, C,, n;, n,, such that

- How can you use these constants?

» What about the similar question for T,(N) - T,(N)?
- Remember, O isn’t a tight bound.
- Make sure to read the hints on the assignment webpage

After tod

» explain w

» LIst exam
framewor

» LIst exam

ay, you should be able to...

nat an Abstract Data Type (ADT) is

nles of ADTs in the Collections
K (from HW2 #1)

nles of data structures that

implement the ADTs in the Collections
framework

» Choose an ADT and data structure to solve a

problem

ADTs and Data
Structures

A data type is an interpretation of data
(bits)

I BUILT THIS
COMPANY
BIT BY BITI

(OO BNCORY ‘d s — S
&P 7
a o <

- "What is this data, and how does it work?”

> Primitive types (int, double): hardware-based

- Objects (such as java.math.BigInteger): require
software interpretation

- Composite types (int[]): software + hardware

What is an Abstract Data Type
(ADT)?

» A mathematical model of a data type

» Specifies:
- The type of data stored (but not Aow it’s stored)
- The operations supported

- Argument types and return types of these operations
(but not Aow they are implemented)

An Example ADT: Stack

» Three basic operations:
- 1sEmpty
> push
° pop
» Derived operations include peek (a.k.a. top)
- How could we write it in terms of the basic
operations?
- We could have peek be a basic operation instead.
- Advantages of each approach?
» Possible implementations:
- Use a linked list.
- Use a growable array.

- Last time, we talked about implementation details
for each.

ADTs for collections of items

Application:
“how can you use it?”

public static void main(String[] args) {
Scanner scanner = new Scanner(System.1in);
ArraylList<SingleDie> dice = new ArraylList<SingleDie>();
while (true) {

¥

System.out.printf("How many sides (Q to quit):");

String response = scanner.next();

if (Character.toUpperCase(response.charAt(0)) == 'Q") {
break;

int nSides = Integer.parseInt(response);
nSides = (nSides < 4) ? 4: nSides;
dice.add(new SingleDie(nSides));

scanner.close();
int minSum = dice.size();
int maxSum = 0;

for (SingleDie die :

¥

dice) {
maxSum += die.getNSides();

A,

Specification
“what can it do?”

Implementation:
“How is it built?”

. public class ArrayList<E> extends AbstractList<E>

Modifier and Type Method and De K .
implements List<E>, RandomAccess, Cloneabl
boolean add(E e) T
Appends the sy . . X X X .
private static final long serialVersionUID = ©
void add(int inde>
Inserts the spe)
operation).] /x>
private transient Object[] elementData;
boolean addAll(Collec -
Appends all of
in the order thi] [**
(optional ope private int size;
boolean addAll(int
Inserts all of th] VAR
FReCHS posi] public ArrayList(int initialCapacity) {
void clear() super() ;
Removes all of if (initialCapacity < 0)
boolean contains(0bje throw new IllegalArgumentException ("Il
Returns true i ini
boolean containsAl1((this.elementData = new Object[initialCapac
Returns true i }
boolean equals(Object
Compares the ¢] [e
E get(int inde»] public ArrayList() {
Returns the ele this (10);
}

Y
CSSE220

CSSE230

Common collection ADTs and
implementations (data structures!)

» List
> Array List
> Linked List

» Stack
» Queue

» Set
> Tree Set
- Hash Set
> Linked Hash Set

» Map

> Tree Map
- Hash Map

» Priority Queue

Underlying data
structures for many

Array
Tree

Implementations for almost all
of these* are provided by the
In

the package.

Often, one particular ADT and
implementation is best for the problem

» Which ADT to use?

- |t depends. How do you access your data? By
nosition? By key? Do you need to iterate through it?
Do you need the min/max?

» Which implementation to use?

- It also depends. How important is fast access vs
fast add/remove? Does the data need to be ordered
in any way? How much space do you have?

» But real life is often messier...

How to figure this out?

» Use Java’s Collections Framework.
- Search for Java 8 Collection
- Read the javadocs to answer the quiz questions.

You-onlyneed-tosubmitonequizperpair—(Put
both-rames—attop)

Q1-9

Java Collections
Framework

Reminder: Available, efficient, bug-
free implementations of many key
data structures

Most classes are in

You started this in HW?2
#1: Weiss Chapter 6 has
more details

Array

» Size must be declared when the
array is constructed

» Can look up or store items by index
Example:
nums[1+1] = nums[1] + 2;

» How is this done?

a | —>

a[N-2]

a[N-1]

List

» A list is an indexed collection where elements
may be added anywhere, and any elements
may be deleted or replaced.

» Accessed by index

» Implementations:
> ArrayList
> LinkedList

Array Lists and Linked Lists

Operations Provided ArrayList LinkedList
Efficiency Efficiency

Random access O(1) O(n)
Add/remove at end amortized O(1), O(1)
worst O(n)
Add/remove at O(n) O(1)
iterator location
AO A] A2 A3 A4 ArrayList
AO E — Al E — A2 E ——»{ A3 E T Asimple.linked list

N o

first last

Stack

» A last-in, first-out (LIFO)

data StrUCture public static void printInReverse (List<String> words) {

2 Real—world Stacks // TODO: implement

Stack<String> stack = new Stack<String>();

- Plate dispensers in for (String w : words) {

stack.push (w) ;

the cafeteria }
5 while (!stack.isEmpty()) {
PancakES! System.out.println(stack.pop()):
» Some uses: }

}
> Tracking paths through a maze

> Providing “unlimited undo” in an application
» java.util.Stack uses LinkedList implementation

Operations Efficiency
Provided

Implemented by

and
Java

Push item O(1)
Pop item O(1)

s a ue to print pairs of words consisting of
word in the input and the word that appeared five
q .

Queue

" 1 1 _ public static void printCurrentAndPreceding (List<String> words) {
) fIrSt In, fIrSt OUt // TODO: implement

FI FO ArrayDeque<String> queue = new ArrayDeque<String>():
() // Preloads the queue:
for (int i = 0; 1 < 5; i++) {

d ata St ru Ct u re } qgueue.add ("NotAWord") ;

for (String w : words) {

» Real-world queues ™ Soi"eaio)

String fiveRAgo = queue.remove ()’

© Waltlng Ilne at : System.out.println(w + ", " + fiveAgo):
the BMV)

o Character on Star Trek TNG

» Some uses:
- Scheduling access to shared resource (e.g., printer)

Operations Efficiency
Provided

Enqueue item O(1) in
Dequeue item O(1) Java

Implemented by
and

Set

» A collection of items without duplicates (in
general, order does not matter)
- If a and b are both in set, then 'a.equals(b)

2 Real —WO rld SEtS public static void printSortedWords (List<String> words) {
TreeSet<String> ts = new TreeSet<String>();
for (String w : words) {
> Students (ering v
. }
© CO”eCtlbIeS for (String s : ts) {
. System.out.println(s);
» One possible use: | Example from 220 |

> Quickly checking if an
item is in a collection

Add/remove item amort. O(1), O(log n)
worst O(n)
Contains? O(1) O(log n)

Sors ems

How is a TreeMap like a TreeSet?
Map e

How is it different?

» Associate keys with values

» Real-world “maps”
> Dictionary
- Phone book

» Some uses:

> Associating student ID with transcript
- Associating name with high scores

Operations | _HashMap | TreeMap _

Insert key-value pair amort. O(1), Of(log n)
worst O(n)
Look up the value O(1) O(log n)

associated with a given key

Sorts items by key!

HashMap/HashSet Example (220)

public static void printWordCountsByLength (List<String> words) {
HashMap<Integer, HashSet<String>> map =
new HashMap<Integer, HashSet<String>>():

for (String w : words) {
int len = w.length();
HashSet<String> set;
if (map.containsKey(len)) {
set = map.get(len);
} else {
set = new HashSet<String>():
map.put (len, set):
}
set.add(w);
}
System.out.printf ("%d unique words of length 3.%n", getCount(map, 3)):
System.out.printf ("%d unique words of length 7.%n", getCount(map, 7)):;
System.out.printf ("%d unigque words of length 9.%n", getCount(map, 9)):
System.out.printf ("%d unique words of length 15.%n", getCount (map, 15)):;

n
n

o
°

}

public static int getCount (HashMap<Integer, HashSet<String>> map, int key) {
if (map.containsKey (key)) {
return map.get (key) .size ()
} else {
return 0;

}

Pl‘iOrity Queue Not like regular

queues!
» Each item stored has an associated priority
> Only item with “minimum” priority is accessible
- Operations: insert, findMin, deleteMin
» Real-world “priority queue”:

o Airport ticketing counter T o er: tyonenesstrine 07
> Some uses str%ngQueue.add("ab");
stringQueue.add ("abcd") ;
o S|mu|at|0ns stringQueue.add ("abc") ;
_ _ stringQueue.add("a");
> Scheduling in an OS | | |
while (stringQueue.size() > 0)
o H uffman COd | ng System.out.println (stringQueue.remove());
Operations Efficiency
_ Provided
Assumes a binary heap e

implementation. nsert/ amort. O(log n),

The version in Warm Up Delete Min worst O(n)
and Stretching isn’t this

efficient. Find Min O(])

Trees, Not Just For Sorting

» Collection of nodes
> One specialized node is the root.

- A node has one parent (unless it is the root)
> A node has zero or more children.

» Real-world “trees”:
> Organizational hierarchies
- Some family trees

» Some uses:

> Directory structure FeJs[J g ilelgl
on a hard drive Provided

- Sorted collections Find O(log n)
Add/remove O(log n)

Only if tree is
“balanced”

Graphs

» A collection of nodes and edges
- Each edge joins two nodes
- Edges can be directed or undirected
» Real-world “graph’:
- Road map
» Some uses:

> Tracking links between web pages
- Facebook

Depends on

: . implementation
Operations Efficiency (time/pspace trade off

Provided

Find O(n) /
Add/remove O(1) or O(n) or O(n?)

Networks

» Graph whose edges have numeric labels

» Examples (labels):
- Road map (mileage)
> Airline's flight map (flying time)
> Plumbing system (gallons per minute)
- Computer network (bits/second)
» Famous problems:
> Shortest path
Maximum flow
Minimal spanning tree
Traveling salesman
Four-coloring problem for planar graphs

o

o

o

o

Common ADTs

» Array

» List
> Array List
> Linked List

» Stack
» Queue

» Set
> Tree Set
- Hash Set

» Map

> Tree Map
- Hash Map

» Priority Queue
» Tree
» Graph

We’ll implement and use nearly
all of these, some multiple ways.

And a few other data structures.

Data Structure Summary

Array O(n) can't do it Constant-time access by position

Stack top only top only Easy to implement as an array.
O(1) O(1)

Queue front only O(1) insert rear, remove front.

O(1)

ArrayList O(N) O(N) Constant-time access by position
O(log N) if Add at end: am. O(1), worst O(N)
sorted

Linked List O(N) O(1) O(N) to find insertion position.

HashSet/Map O(1) amort. O(1), Not traversable in sorted order

worst O(N)

TreeSet/Map O(log N) O(log N) Traversable in sorted order

PriorityQueue O(1) O(log N) Can only find/remove smallest

Search Tree O(log N) O(log N) If tree is balanced, O(N) otherwise

*Some of these are amortized, not worst-case.

