
What do graphs have that trees don’t?

https://www.google.com/maps/dir/Rose-
Hulman+Institute+of+Technology,+Wabash+Avenue,+Terre+Haute,+IN/Holiday+World+%26+Splashin'+Safa
ri,+452+E+Christmas+Blvd,+Santa+Claus,+IN+47579/@38.7951117,-
88.3071855,8z/data=!3m1!4b1!4m13!4m12!1m5!1m1!1s0x886d6e421b703737:0x96447680305ae1a4!2m2!1
d-87.3234824!2d39.4830622!1m5!1m1!1s0x886e581193468c21:0x50d781efa416e09b!2m2!1d-
86.9128116!2d38.1208766

After this lesson, you should be able to …
… define the major terminology relating to graphs
… implement a graph in code, using various
conventions

EA

DB

FC

Review

https://www.google.com/maps/dir/Rose-Hulman+Institute+of+Technology,+Wabash+Avenue,+Terre+Haute,+IN/Holiday+World+&+Splashin'+Safari,+452+E+Christmas+Blvd,+Santa+Claus,+IN+47579/@38.7951117,-88.3071855,8z/data=!3m1!4b1!4m13!4m12!1m5!1m1!1s0x886d

Terminology
Representations
Algorithms

I received this unsolicited email from former student, Sang
Choi, in June 2020:

"It’s literally one day into my summer vacation and I’m
already using 230 content in my work. My research
internship started yesterday, and my research project heavily
involves implementing formal methods for the verification of
programs. I’ve been assigned to read a lot of papers on this
stuff, and I’ve noticed that formal methods are graph-based.
There’s states and transitions, which are vertices and edges
in graphs. The paper I’m currently reading also goes into
depth about how an increase of states in the model of a
device might create a greater time complexity of O(N^2) but
the author found out it was an O(N) increase after some
testing When he runs these tests, he also talks about how
many vertices he’s visited, and how many minutes it took
him to run the test. This just shows how important data
structures are to computer science."

A graph G = (V,E) is composed of:
V: set of vertices (singular: vertex)
E: set of edges

An edge is a pair of vertices. Can be
unordered: e = {u,v} (undirected graph)
ordered: e = (u,v) (directed graph/digraph)

Undirected
V = {A,B,C,D,E,F}
E = {{A,B},{A,C},{B,C},{B,D},

{C,D},{D,E},{D,F},{E,F}}

Directed
V = {a,b,c,d,e,f}
E = {(a,b),(a,c),(b,d),(c,d),

(d,c),(d,e),(d,f),(f,c)}

EA

DB

FC

ba

dc

ef

} Size? Edges or vertices?

} Usually take size to be n = |V| (# of vertices)

} But the runtime of graph algorithms often
depend on the number of edges, |E|

} Relationships between |V| and |E|?

Fact:

(Why?)

• If {u,v} is an edge, then u and v are neighbors
(also: u is adjacent to v)

• degree of v = number of neighbors of v

EA

DB

FC

• If (u,v) is an edge, then v is a successor of u and
u is a predecessor of v

• Out-degree of v = number of successors of v
• In-degree of v = number of predecessors of v

ba

dc

ef

• A path is a list of unique vertices joined by edges.
• For example, [a, c, d] is a path from a to d.

• A subgraph is connected if every pair of vertices
in the subgraph has a path between them.

EA

DB

FC

Not a connected graph.

Subgraph Connected?
{A,B,C,D} Yes
{E,F} Yes
{C,D,E} No
{A,B,C,D,E,F} No

(Connected) component: a maximal connected subgraph.

For example, this graph has 3 connected components:

Tree: connected acyclic graph (no cycles)

Example. Which component is a tree?

Question: for a tree, what is the relationship between
m = #edges and n = #vertices?

m = n – 1

• A directed path is a list of unique vertices joined
by directed edges.
• For example, [a, c, d, f] is a directed path from

a to f. We say f is reachable from a.

• A subgraph is strongly connected if for every pair
(u,v) of its vertices, v is reachable from u and u is
reachable from v.

ba

dc

ef

1

2

• Strongly-connected component: maximal
strongly connected subgraph

Strongly
connected
components
{a}
{b}
{c,d,f}
{e}

ba

dc

ef

} Each vertex associated with a name (key)
} Examples:
◦ City name
◦ IP address
◦ People in a social network

} An edge (undirected/directed) represents a link
between keys

} Graphs are flexible: edges/nodes can have
weights, capacities, or other attributes

} Adjacency matrix
◦ Each key is associated with an index from 0, …, (n-1)

� Map from keys to ints?
◦ Edges denoted by 2D array (#V x #V) of 0’s and 1’s

} Adjacency list
◦ Collection of vertices

� Map from keys to Vertex objects?
◦ Each Vertex stores a List of adjacent vertices

3-5

EA

DB

FC

} Edge list
◦ A collection of vertices and a

collection of edges

EA

DB

FC

Adjacency matrix

Adjacency list

0 1 2 3 4 5
0 0 1 1 0 0 0

1 1 0 1 1 0 0

2 1 1 0 1 0 0

3 0 1 1 0 1 1

4 0 0 0 1 0 1

5 0 0 0 1 1 0

Aà0
Bà1
Cà2
Dà3
Eà4
Fà5

} Running time of degree(v)?

} Running time of deleteEdge(u,v)?

} Space efficiency?

[B,C]
A
B
C
D
E
F

[A,C,D]

[A,B,D]

[B,C,E,F]

[D,F]
[D,E]

3-5

} Milestone 1: Implement
AdjacencyListGraph<T> and
AdjacencyMatrixGraph<T>
◦ both extend the given ADT, Graph<T>.

} Milestone 2: Write methods
◦ stronglyConnectedComponent(v)
◦ shortestPath(from, to)

and use them to go WikiSurfing!

6-8

https://thewikigame.com/speed-race

ba

dc

ef

6

4

10

3 2

5

To discuss algorithms, take
MA/CSSE473 or MA477

} What’s the cost of the shortest path from A to
each of the other nodes in the graph?

For much more on graphs, take MA/CSSE 473 or MA 477

} Spanning tree: a connected acyclic subgraph that
includes all of the graph’s vertices

} Minimum spanning tree of a weighted, connected
graph: a spanning tree of minimum total weight

Example:

c

db

a
4

2
3

6

7

c

db

a

2
3

6

MST:

} n cities, weights are travel distance
} Must visit all cities (starting & ending at same

place) with shortest possible distance

• Exhaustive search: how many routes?
• (n–1)!/2 Î Θ((n–1)!)

} Online source for all things TSP:
◦ http://www.math.uwaterloo.ca/tsp/

http://www.math.uwaterloo.ca/tsp/

