CSSE 230 Day 2

Growable Arrays Continued
Big—O notation

Submit Growable Array exercise

Agenda and goals

» Growable Array recap
» Big—-Oh definition

» After today, you’ll be able to

- Use the term amortized appropriately in analysis
- State the formal definition of big—-Oh notation

Iterative Code Analysis Examples

How many times does sum++ run?

for (1 = 4; 1 < n; 1i++)
for (3 = 0; 7 <= n; J++)
sum+-+;

Why is this one so easy?

What if inner were for (3 = 0; § <= 1i; J++) ?

Iterative Code Analysis Examples

How many times does sum++ run?

for (1 = 1; 1 <= n; 1 *= 2)

sum+-+;

Be precise, using floor/ceiling as needed, to get full
credit.

Q2-3
Questions?

» About Homework 17

- Aim to complete ASAP, since it is due after next
class

> |t is substantial
- The last problem (the table) is worth lots of points!

» About the Syllabus?

Warm Up and Stretching thoughts

> Short but intense! ~50 lines of code total in our
solutions

- Be sure to read the description of how it will be
graded. Note how style will be graded.

- Demo: Use Git to check out the project

- Demo: Running the JUnit tests for test, file,
package, and project

Growable Arrays Exercise

Solution

Worst-case vs amortized cost for adding an
element to an array using the doubling scheme

Worst-case:
O(n)

o
O(1)

Note: amortized is not the same as average case!

* average case: averaged over /nput domain.

« amortized cost: per-operation cost when
undergoing a sequence of operations.

Q6-7
Conclusions

» What’s the amortized and worst-case costs of adding an
additional string...
> in the doubling strategy?
> in the add-one strategy?

» For which strategy is amortized analysis meaningful?

- “When ...a worst-case bound for a sequence of operations is better than
the corresponding bound obtained by considering each operation

separately and can be spread evenly to each operation in the sequence...”
—Weiss, p.845

> l.e., when amortized runtime is better than worst-case runtime

» Are there any hypothetical cases where we would prefer the
slower strategy?

Algorithm Analysis:
Running Time

Running Times

» Algorithms may have different t/me
complexity on different data sets

» W
» W
» W

nat do we mean by "Worst Case™?
nat do we mean by "Average Case™?

nat are some application domains where

knowing the Worst Case time complexity
would be important?

>

http://cacm.acm.org/magazines/2013/2/160173-the-tail-at-scale/fulltext

Average Case and Worst Case

R ———————— \ U0] B BT RS

average-case

S

- Dest-case

Runnig Time
Py
R

A B C D E F G
[nput Instance

Note: amortized is not the same as average case!

* average case: averaged over /nput domain. "Expected runtime”

« amortized cost: per-operation cost when undergoing a sequence of
operations. “Guaranteed runtime, when amortized to a per-operation basis”

Notation for Asymptotic
Analysis

Big-O

Asymptotic Analysis

» Rule of thumb: we only care what happens as
N (input size) gets large

» Is the runtime linear? quadratic? exponential?
in N

Figure 5.1

Running times for small inputs

10 I I I I I I I I I
Linear
O(Nlog N)
8 Quadratic 7
Cubic

Running Time (milliseconds)

0 | | | | | | 1 | |
10 20 30 40 50 60 70 80 90 100

Input Size (N)

Data Structures & Problem Solving using JAVA/2E ~ Mark Allen Weiss ~ © 2002 Addison Wesley

Figure 5.2

Running times for moderate inputs

Running Time (seconds)

0.8

0.6

0.4

0.2

I [I

Linear

O(N log N)
Quadratic

Cubic

|
1

i | I

I

1000

2000

3000

4000 5000 6000 7000 8000

Input Size (N)

9000 10000

Data Structures & Problem Solving using JAVA/2E

Mark Allen Weiss

©2002 Addison Wesley

Figure 5.3

Functions in order of increasing growth rate

FUNCTION NAME

¢ Constant .
The answer to most big-O

log ¥ Logarithrmic questions is one of these

log?N Log-squared functions

N Linear

Nlog N Mlog N a.k.a "log linear"

N? Quadratic

N? Cubic

2N Exponential

Data Structures & Problem Solving using JAVA/2E ~ Mark Allen Weiss ~ © 2002 Addison Wesley

Simple Rule for Big-0O (informal)

» Drop lower order terms and constant factors
» 7n - 3 is O(n)

» 8n%logn + 5n? + n is O(n4logn)

Q8
Formal Definition of Big-O

» Given functions f(n) and g(n), we say that f(n) is O(g(n)) if and
only if there exist constants ¢ > 0 and ny = O such that

f(n) < c g(n) for all n = n,.

» For this to make sense, f(n) and g(n) should be functions over
non-negative integers, and f(n), g(n) > 0 on this range.

More formally:
“f(n) is in O(g(n))”.

Running Time

O(g(n)) is actually a set
(of what?)

Input Size

Q9-10
Proving a Big-0 relationship

» f(n) is O(g(n)) if there exist two positive constants ¢
and n, such that f(n) < c g(n) for all n > n,.

» Q: How to prove that f(n) is O(g(n))?
A: Give c and n, and show the condition holds.

» Ex1: f(n) = 4n + 15. g(n) = 7?7?
» Ex2: f(n) =5n2 +2n-4. g(n) =727

