
Growable Arrays Continued
Big-O notation

Submit Growable Array exercise

} Growable Array recap
} Big-Oh definition

} After today, you’ll be able to
◦ Use the term amortized appropriately in analysis
◦ State the formal definition of big-Oh notation

How many times does sum++ run?

for (i = 4; i < n; i++)
for (j = 0; j <= n; j++)

sum++;

Why is this one so easy?

What if inner were for (j = 0; j <= i; j++) ?

How many times does sum++ run?

for (i = 1; i <= n; i *= 2)
sum++;

Be precise, using floor/ceiling as needed, to get full
credit.

} About Homework 1?
◦ Aim to complete ASAP, since it is due after next

class
◦ It is substantial
◦ The last problem (the table) is worth lots of points!

} About the Syllabus?

Q2-3

◦ Short but intense! ~50 lines of code total in our
solutions

◦ Be sure to read the description of how it will be
graded. Note how style will be graded.

◦ Demo: Use Git to check out the project

◦ Demo: Running the JUnit tests for test, file,
package, and project

Solution

Worst-case:
O(n)

amortized:
O(1)

} What’s the amortized and worst-case costs of adding an
additional string…
◦ in the doubling strategy?
◦ in the add-one strategy?

} For which strategy is amortized analysis meaningful?
◦ “When …a worst-case bound for a sequence of operations is better than

the corresponding bound obtained by considering each operation
separately and can be spread evenly to each operation in the sequence…”
—Weiss, p.845

◦ I.e., when amortized runtime is better than worst-case runtime

} Are there any hypothetical cases where we would prefer the
slower strategy?

Q6-7

} Algorithms may have different time
complexity on different data sets

} What do we mean by "Worst Case"?
} What do we mean by "Average Case"?
} What are some application domains where

knowing the Worst Case time complexity
would be important?

} http://cacm.acm.org/magazines/2013/2/160173-the-tail-
at-scale/fulltext

http://cacm.acm.org/magazines/2013/2/160173-the-tail-at-scale/fulltext

Big-O

} Rule of thumb: we only care what happens as
N (input size) gets large

} Is the runtime linear? quadratic? exponential?
in N

Figure 5.1
Running times for small inputs

Data Structures & Problem Solving using JAVA/2E Mark Allen Weiss © 2002 Addison Wesley

(linear looks
constant for
small inputs)

Figure 5.2
Running times for moderate inputs

Data Structures & Problem Solving using JAVA/2E Mark Allen Weiss © 2002 Addison Wesley

Figure 5.3
Functions in order of increasing growth rate

Data Structures & Problem Solving using JAVA/2E Mark Allen Weiss © 2002 Addison Wesley

a.k.a "log linear"

The answer to most big-O
questions is one of these
functions

} Drop lower order terms and constant factors

} 7n – 3 is O(n)

} 8n2logn + 5n2 + n is O(n2logn)

} Given functions f(n) and g(n), we say that f(n) is O(g(n)) if and
only if there exist constants c > 0 and n0 ≥ 0 such that

f(n) ≤ c g(n) for all n ≥ n0.

} For this to make sense, f(n) and g(n) should be functions over
non-negative integers, and f(n), g(n) ≥ 0 on this range.

Q8

More formally:
“f(n) is in O(g(n))”.

O(g(n)) is actually a set
(of what?)

} f(n) is O(g(n)) if there exist two positive constants c
and n0 such that f(n) ≤ c g(n) for all n ≥ n0.

} Q: How to prove that f(n) is O(g(n))?
A: Give c and n0 and show the condition holds.

} Ex1: f(n) = 4n + 15. g(n) = ???
} Ex2: f(n) = 5n2 +2n – 4. g(n) = ???

Q9–10

