CSSE 230

Hash table basics

How can hash tables perform both contains() in O(1) time
and add() in amortized O(1) time, given enough space?

12

Hashing

Efficiently putting 5 pounds of

data in a 20 pound bag

Reminder: sets hold unique items

* [mplementation choices:

* TreeSet (and TreeMap) uses a balanced tree: O(log n)
= Uses a red-black tree

» HashSet (and HashMap) uses a hash table: amortized
O(1) time

= Related: maps allow insertion, retrieval, and
deletion of items by key.

Since keys are unique, they form a set.
The values just go along for the ride.
We’ll focus on sets.

Big ideas of hash tables

“rose"e > 3506511 e“ >
12

1. The underlying storage?
Growable array

2. Calculate the index to store an item based
on the item itself. How?
Hashcode. Fast but un-ordered.

3. What if that location is already occupied
with another item?
Collision. Two approaches to resolve this

Introductory Idea: Direct Address Tables

collection

k[]
L]

L]

direct access table

\
)

T

$

= n elements with unique keys in range [0,k)
= Array of size m

= kK < m, then use the key as an array index.
= Clearly O(1) lookup of keys

= Main Issue?

= The range of potential keys [0,k) is usually much
larger than the storage we want for an array

= Example: RHIT student IDs vs. # Rose students

Diagram from John Morris, University of Western Australia

More Practical: Hash Tables

Three step process used for accessing hash tables:
1. Transform key into an integer x

2. Use a calculation on x to generate a integer yin the range
[0..m-1], where m = array capacity

3. Use yto index into the hash table array, i.e.,

hTable[y]

“rose"e > 3506511 9 >11 OFE

12

= Step 1 is handled by Java’s hashCode() method
= Javadoc prototype for Object’s hashCode() method:

int hashCode ()
Returns a hash code value for the object

= Step 2 is often implemented by: y= xmod m

= Using mod operation is called the ‘Division Method’
= ‘Multiplication Methods’ also exist

Step 1. hashCode()

key = HiEH @6 E0H - integer

Required property of Java’s hashCode() method:

« Given x.equals(y), i.e., x is equal to vy,
then x.hashCode() == y.hashCode()

Desirable properties:
* Should be fast to calculate
« Should produce integers that have a nice uniform distribution

“rose”’.hashCode()= 3506511
“hulman”.hashCode()= -1206158341 (can be negative if overflows)
“institute”.hashCode() = 36682261

Step 2. Convert int to index

» Example: if mm = 100:

hashCode(“rose”) = 3506511 ->11
mod

hashCode(*hulman”) = -1206158341 m ->07%

hashCode(“institute”) = 36682261 261

* Note: since the hashCode is an integer, it might be negative...
« If it is negative, add Integer.MAX_VALUE + 1 to make it
positive before you mod. (Same as ANDing with
Ox 7fffffff, or removing sign bit from two’s complement)
« This mimics what’s actually done in practice: when mis a
power of 2, say 2%, we can just truncate, keeping the last
k bits (instead of taking mod m). Sign bit is lost.

3-4

Step 3. Access array[index]

* Insert element at array[index]

12

» Unless this position is already occupied

i

Some hashCode() implementations

» Default if you inherit Object’s: memory location
(platform-specific, actually)

= Many JDK classes override hashCode()
* [nteger: the value itself
= Double: XOR first 32 bits with last 32 bits
= String: we’ll see shortly!
= Date, URL, ...

» Custom classes should override hashCode()
» Use a combination of final fields.

» |f key is based on mutable field, then the hashcode will
change and you will lose it!

= Developers often use strings when feasible

A simple hashCode function for Strings is a
function of every character

class String {
public int hashCode () {
int total = 0;
for (int i = 0; i < this.length(); i++)
total = total + this.charAt(i);
return total;

}
}

= Advantages?

» Disadvantages?

A better hashCode function for Strings uses
place value

class String {
public int hashCode () {
int total = 0;
for (int i = 0; i < this.length(); i++)
total = total*256 + this.charAt(i);
return total;

}

= Spreads out the values more, and anagrams not an issue.
= What about overflow during computation?

= What happens to first characters?

A better hashCode function for Strings uses
place value with a base that’s prime

class String {
public int hashCode () {
int total = 0;
for (int 1 = 0; 1 < this.length(); i++)
total = total*31 + this.charAt(i);
return total;

}
}

= Spread out, anagrams OK, overflow OK.

= This is String’s hashCode () method.
* The (x = 31X + y) pattern is a good one to follow.

= See

https://docs.oracle.com/javase/8/docs/api/java/lang/String.html

Collisions are inevitable 7

“rose"e > 3506511 e“ >

12

= A good hashCode operation distributes keys
uniformly, but collisions will still happen

» hashCode() are ints = only ~4 billion unique values.
= How many 16 character ASCII strings are possible?

* If nis small, tables should be much smaller
= mod will cause collisions too!

= Solutions:
= Chaining
* Probing (Linear, Quadratic)

Separate chaining: an array of linked lists

Examples: .get(“at”), .get(*him”),

Grow in another direction (hashcode=18), .add(“him”), .delete(“with”)

0 1 3 4 5 6 7 8 9 10 11 13 14 15 16 17 18 19 20 21 22 23 .24 25 26 237 28 29 30
L bl e Rl il ? TE?ITLY il o B ?IYL
A OR TO HAVE BE FOR | BUT HAD AN NOT AND AS FROM IN ARE THIS THEY IS ON
® ™ ®] e
Y Y Y Y Y \ Y Y
THE HIS WAS HE THAT AT BY WITH
®
Y \
OF IT

Java’s HashMap uses chaining and a table

size that is a power of 2.

Runtime of hashing with chaining depends on

the load factor

LU L LT s LTt L s s Te [e L Tt [t s L Te T2]

[
Val%

H-em—k
N

m array slots, n items.
Load factor, A=n/m.

Average length of chain is O(}), so
Average runtime of search is O(L).

Space-time trade-off
1. If m constant, then this is O(n). Why?

T HAD)T AS FROM THIS THEY

9-10

NETHSIE

2. If keep (say) n < 0.75m, by doubling m when appropriate, then

this is Why?
3. Also, insertion/deletion is also

Alternative: Store collisions in other array
slots.

= No need to grow in second direction

= No memory required for pointers
= Historically, this was important!
= Still is for some data...

= Will still need to keep load factor (A\=n/m) low
or else collisions degrade performance
= We'll grow the array again

Collision Resolution: Linear Probing

* Probe H (see if it causes a collision)

= Collision? Also probe the next available space:
= Try H, H+1, H+2, H+3, ...
= Wraparound at the end of the array

= Example on board: .add() and .get()

= Problem: Clustering

= Animation:

= Applet deprecated on most browsers
= Moodle has a video captured from there
»= Or see next slide for a few freeze-frames.

11

http://www.cs.auckland.ac.nz/software/AlgAnim/hash_tables.html

hash (89, 10) = 9
hash (18, 10) = 8
hash (49, 10) = 9
hash (58, 10) = 8
hash (9, 10) = 9
After insert 89 After insert 18 After insert 49 After insert 58 After insert 9
Figure 20.4 0 25 19 0
Linear probing hash
table after each insertion 1 58 58
2 9
3
Good example 4
of clustering :
and wraparound
6
7
8 18 18 18 18
9 89 89 89 89 89

Data Structures & Problem Solving using JAVA/2E~ Mark Allen Weiss ~ © 2002 Addison Wesley

Clustering Example

Collision Stats

Aﬂdress
cor N1 NONAR WINIINI 10) |20
P%ﬁil Keys Placed in Table GLUsEeES
Address
co | |l.|||.||||||||||19
P?iﬁg? Keys Placed in Table s ters
Address
ro | I O IO 1
Piiﬁ%?t Keys Placed in Table EIUSERES

number of collisions during insertions

90

RN -J00
Lo Y Y o o Y

0 10 20 30 40 50 60 70 S0 90 100

ki{th) itens

