
Hash table basics

How can hash tables perform both contains() in O(1) time
and add() in amortized O(1) time, given enough space?

hashCode()“rose”à modà 3506511 à à 11 rose

…
10
11
12
…

Efficiently putting 5 pounds of
data in a 20 pound bag

§ Implementation choices:
§ TreeSet (and TreeMap) uses a balanced tree: O(log n)

§ Uses a red-black tree

§ HashSet (and HashMap) uses a hash table: amortized
O(1) time

§ Related: maps allow insertion, retrieval, and
deletion of items by key:

Since keys are unique, they form a set.
The values just go along for the ride.
We’ll focus on sets.

1. The underlying storage?
Growable array

2. Calculate the index to store an item based
on the item itself. How?

Hashcode. Fast but un-ordered.

3. What if that location is already occupied
with another item?

Collision. Two approaches to resolve this

hashCode()“rose”à modà 3506511 à à 11 rose

…
10
11
12
…

§ n elements with unique keys in range [0,k)
§ Array of size m
§ k < m, then use the key as an array index.

§ Clearly O(1) lookup of keys

Diagram from John Morris, University of Western Australia

§ Main Issue?
§ The range of potential keys [0,k) is usually much

larger than the storage we want for an array
§ Example: RHIT student IDs vs. # Rose students

1

Three step process used for accessing hash tables:
1. Transform key into an integer x
2. Use a calculation on x to generate a integer y in the range

[0..m-1], where m = array capacity
3. Use y to index into the hash table array, i.e.,

hTable[y]

§ Step 1 is handled by Java’s hashCode() method
§ Javadoc prototype for Object’s hashCode() method:

§ Step 2 is often implemented by: y = x mod m
§ Using mod operation is called the ‘Division Method’
§ ‘Multiplication Methods’ also exist

int hashCode()
Returns a hash code value for the object

Step 1“rose”à Step 2à 3506511 à à 11 rose

…
10
11
12
…

Step 3

2

hashCode()key à à integer

Required property of Java’s hashCode() method:
• Given x.equals(y), i.e., x is equal to y,

then x.hashCode() == y.hashCode()

Desirable properties:
• Should be fast to calculate
• Should produce integers that have a nice uniform distribution

“rose”.hashCode()= 3506511
“hulman”.hashCode()= -1206158341 (can be negative if overflows)
“institute”.hashCode() = 36682261

§ Example: if m = 100:

hashCode(“rose”) = 3506511

hashCode(“hulman”) = -1206158341

hashCode(“institute”) = 36682261

mod
m

à11

à07*

à61

* Note: since the hashCode is an integer, it might be negative…
• If it is negative, add Integer.MAX_VALUE + 1 to make it

positive before you mod. (Same as ANDing with
0x7fffffff, or removing sign bit from two’s complement)

• This mimics what’s actually done in practice: when m is a
power of 2, say 2k, we can just truncate, keeping the last
k bits (instead of taking mod m). Sign bit is lost.

§ Insert element at array[index]

§ Unless this position is already occupied

a “collision”

3-4

hashCode()“rose”à modà 3506511 à à 11 rose

…
10
11
12
…

§ Default if you inherit Object’s: memory location
(platform-specific, actually)

§ Many JDK classes override hashCode()
§ Integer: the value itself
§ Double: XOR first 32 bits with last 32 bits
§ String: we’ll see shortly!
§ Date, URL, ...

§ Custom classes should override hashCode()
§ Use a combination of final fields.
§ If key is based on mutable field, then the hashcode will

change and you will lose it!
§ Developers often use strings when feasible

5

§ Advantages?

§ Disadvantages?

class String {
public int hashCode() {
int total = 0;
for (int i = 0; i < this.length(); i++)
total = total + this.charAt(i);

return total;
}

}

§ Spreads out the values more, and anagrams not an issue.
§ What about overflow during computation?

§ What happens to first characters?

class String {
public int hashCode() {
int total = 0;
for (int i = 0; i < this.length(); i++)
total = total*256 + this.charAt(i);

return total;
}

}

§ Spread out, anagrams OK, overflow OK.
§ This is String’s hashCode() method.
§ The (x = 31x + y) pattern is a good one to follow.

§ See https://docs.oracle.com/javase/8/docs/api/java/lang/String.html#hashCode--

6

class String {
public int hashCode() {
int total = 0;
for (int i = 0; i < this.length(); i++)
total = total*31 + this.charAt(i);

return total;
}

}

https://docs.oracle.com/javase/8/docs/api/java/lang/String.html

§ A good hashCode operation distributes keys
uniformly, but collisions will still happen

§ hashCode() are ints à only ~4 billion unique values.
§ How many 16 character ASCII strings are possible?

§ If n is small, tables should be much smaller
§ mod will cause collisions too!

§ Solutions:
§ Chaining
§ Probing (Linear, Quadratic)

7

hashCode()“rose”à modà 3506511 à à 11 rose

…
10
11
12
…

Java’s HashMap uses chaining and a table
size that is a power of 2.

8

Grow in another direction Examples: .get(“at”), .get(“him”),
(hashcode=18), .add(“him”), .delete(“with”)

9-10

m array slots, n items.
Load factor, l=n/m.

Average length of chain is O(l), so
Average runtime of search is O(l).

Space-time trade-off
1. If m constant, then this is O(n). Why?
2. If keep (say) n ≤ 0.75m, by doubling m when appropriate, then

this is O(1). Why?
3. Also, insertion/deletion is also amortized O(1)

§ No need to grow in second direction

§ No memory required for pointers
§ Historically, this was important!
§ Still is for some data…

§ Will still need to keep load factor (l=n/m) low
or else collisions degrade performance
§ We’ll grow the array again

§ Probe H (see if it causes a collision)
§ Collision? Also probe the next available space:

§ Try H, H+1, H+2, H+3, …
§ Wraparound at the end of the array

§ Example on board: .add() and .get()

§ Problem: Clustering

§ Animation:
§ http://www.cs.auckland.ac.nz/software/AlgAnim/hash_table

s.html
§ Applet deprecated on most browsers
§ Moodle has a video captured from there
§ Or see next slide for a few freeze-frames.

11

http://www.cs.auckland.ac.nz/software/AlgAnim/hash_tables.html

Figure 20.4
Linear probing hash
table after each insertion

Data Structures & Problem Solving using JAVA/2E Mark Allen Weiss © 2002 Addison Wesley

Good example
of clustering
and wraparound

