
Binary Tree Iterators

After today, you should be able to…
… implement a simple iterator for trees
… implement _lazy_ iterators for trees

1



Quiz question: What became clear to you as a result of class?

Another 230 student, not to be outdone: 
Trees are unbeLEAFable fun when you can use recursion to traverse 
them, which helps you get to the ROOT of the problem.



What if we want to iterate over 
the elements in the nodes of the 
tree one-at-a-time instead of 
just printing all of them?



} In Java, specified by java.util.Iterator<E>

2



For any data structure that implements Iterable, (i.e., it defines 
the factory method iterator() which returns an iterator over the 
data) we can use the “foreach” syntax:

This is equivalent to:

for (Integer val : iterableDataStruct) {
...

}

for (Iterator<Integer> itr = iterableDataStruct.iterator();
itr.hasNext(); 
) {

Integer val = itr.next();
...

}



Creating a tree iterator would allow us to traverse a tree 
iteratively (rather than recursively).

for (T item : binarySearchTree) {
...

}

Iterator<T> preOrderIt = new PreOrderIterator();
while (preOrderIt.hasNext()) { 

T item = preOrderIt.next();
...

}

We could have different iterators for different traversal orders.



} Pros: easy to write.
} Cons? We’ll see shortly!

Tree level (header)

Node level (recursion)
ArrayList<T> list 

= new ArrayList<T>();
root.toArrayList(list);

return list;
x

“Put contents of your tree in this list”

list

1

2

3“Put contents of your 
tree in this list”

“Put contents of your 
tree in this list”

list.add(x)NULL_NODE

return

list list

toArrayList()

left.toArrayList(list); right.toArrayList(list);



} Consider a tree with 1 million elements.
} What if we only end up iterating over the first 

10 elements?

} To improve efficiency, the iterator should 
iterate on the tree itself.
◦ Constructor should do minimal setup
◦ On each .next() query, only do as much work as 

needed to respond & set up for future queries
◦ In this context, laziness means efficiency!

3



} Preorder: root, left, right

} Rather than carrying out all instructions at once, we 
should lazily handle them

} Store “tokens” representing pending instructions in a 
data structure (what data structure?)

4-5

x 1

3“preorder-traverse 
subtree”

visit

2 “preorder-traverse 
subtree”



} Inorder: left, root, right

} Consider two types of instruction tokens:
◦ 0: “traverse subtree”: 
◦ 1: “visit node and traverse its right subtree”

} Loop: pop and either (0) push it and left, or (1) push right and return data

6

x 2

3

visit

1 “inorder-traverse 
subtree”

“inorder-traverse 
subtree”

class Token {
BinaryNode node;
int tag;

}

Could represent tokens with, 
say, a compound class:

Use a Stack<Token> to store 
instructions



A

B

D

F

E

C

} The idea of using instruction tokens extends nicely to 
postorder iterators too.

} If you just need an inorder iterator, an alternative is, 
whenever you see a node for the first time, to proactively 
push a chain of its left children. 



} What happens if we replace the Stack in the 
preorder iterator with a Queue?

7



Suggestion: work on Doublets 
with your partner!


