
More BinaryTree methods
Tree Traversals

Q1-3

After today, you should be able to…
… traverse trees on paper & in code

} Please complete the StacksAndQueues
partner evaluation in Moodle after you submit
your final code.
◦ Due Friday

} Doublets is next programming assignment.
◦ Solve it with a partner – meet later during today's

class.
◦ Instructor demo later too.

} Questions (Exam, Stacks & Queues, HW3)?

Quiz question: What became clear to you as a result of class?

CSSE230 student: I was TREEted to some good knowledge by the time
I LEAFt the classroom.

4 possibilities for children (leaf,
Left only, Right only, Both)

1 possibility for children: Both
(which could be NULL_NODE)

NULL_NODE

Simpler

Simpler

TL TR

NULL_NODE

OR

Comment out unused tests and
uncomment as you go

Write containsNonBST(T item) now.

} If (node is null)
◦ Return something simple

} Recurse to the left
} Recurse to the right
} Combine results with

this node

TL TR

NULL_NODE

0

N(TL) N(TR)

N(TL) + N(TR) +1

} If (node is null)
◦ Return something simple

} Recurse to the left
} Recurse to the right
} Combine results with

this node

TL TR

NULL_NODE

–1

h(TL) h(TR)

max{h(TL), h(TR)}
+ 1

} If (node is null)
◦ Return something simple

} Recurse to the left
} Recurse to the right
} Combine results with

this node

TL TR

xNULL_NODE

false

b(TL) b(TR)

(x == item) ||
b(TL) || b(TR)

} Print the tree
contents

} Sum the values of the
nodes

} Dump the contents to
an array list

} …

} All involve a recursive
traversal of the tree.

} Question: in what
order to visit nodes?

} If (node is null)
◦ Return something simple

} Recurse to the left
} Recurse to the right
} Combine results with

this node

TL TR

xNULL_NODE

} Depth-first
◦ PreOrder (“top-down”)
� root, left, right
◦ InOrder (“left-to-right”)
� left, root, right
◦ PostOrder (“bottom-up”)
� left, right, root

} Breadth-first / LevelOrder
◦ Level-by-level, left-to-right

4

L M N O P

G

Q

H JI K

FED

B C

A

L M N O P

G

Q

H JI K

FED

B C

A

4

public void printPreOrder() {
if (this == NULL_NODE) return;
System.out.println(this.data.toString());
left.printPreOrder();
right.printPreOrder();

}

public void printInOrder() {
if (this == NULL_NODE) return;
left.printInOrder();
System.out.println(this.data.toString());
right.printInOrder();

}

public void printPostOrder() {
if (this == NULL_NODE) return;
left.printPostOrder();
right.printPostOrder();
System.out.println(this.data.toString());

}

If the tree has N
nodes, what’s the
big-O run-time of
each traversal?

} Brainstorm how to write:
public ArrayList<T> toArrayList()

} Then BST toString() will simply be:
return toArrayList().toString();

5

} toArrayList() is most efficient if we
◦ Create the list only once, in the header
◦ Pass (a reference to) the list down the recursion

� All the “communication” is top-down (parent-to-child)

5

Tree level (header)

Node level (recursion)

ArrayList list
= new ArrayList();

x

“Put contents of your tree in this list”

list

li
st

list

1

2
3“Put contents of your

tree in this list”

“Put contents of your
tree in this list”

list.add(x)NULL_NODE

return

Size(), height(), contains(), toArrayList(),
toString(), etc.

What if we want an iterator (one element at a
time)?
Next class

