
Maximum Contiguous Subsequence Sum
How to balance code simplicity and efficiency?

After today’s class you will be able to:
state and solve the MCSS problem on small arrays by observation
find the exact runtimes of the naive MCSS algorithms

https://openclipart.org/image/2400px/svg_to_png/169467/bow_tie.png

Q1-3,
4a

} Homework 1 due tonight
◦ Lots of help available today if still working.

Instructors, Lab TAs, CampusWire

} WarmUpAndStretching due after next class
◦ Iterators? Read code comments, or Weiss Ch. 1-4.

} Reading for Day 4: Why Math?

} Finish up big-O, so you can
◦ explain the meaning of big-O, big-Omega (W), and

big-Theta (Θ)
◦ apply the definition of big-O to asymptotically

analyze functions, and running time of algorithms

} Analyze algorithms for a sample problem,
Maximum Contiguous Subsequence Sum
(MCSS), so you can
◦ state and solve the MCSS problem on small arrays by

observation
◦ find the exact runtimes of the naive MCSS algorithms

Big-O
Big-Omega
Big-Theta

} f(n) is O(g(n)) if there exist c, n0 such that:
f(n) ≤ cg(n) for all n ≥ n0

◦ So big-Oh (O) gives an upper bound

} f(n) is W(g(n)) if there exist c, n0 such that:
f(n) ≥ cg(n) for all n ≥ n0

◦ So big-omega (W) gives a lower bound

} f(n) is Θ(g(n)) if it is both O(g(n)) and W(g(n))
Or equivalently:

} f(n) is Θ(g(n)) if there exist c1, c2, n0 such that:
c1g(n) ≤ f(n) ≤ c2g(n) for all n ≥ n0

◦ So big-theta (Θ) gives a tight bound

Q4-5

} Give tightest bound you can
◦ Saying 3n + 2 is O(n3) is true*, but not as precise as

saying it’s O(n)
◦ *When we ask for true/false, use the definitions.
◦ And when analyzing code, we’ll just ask for Θ to be

clear.

} Simplify:
◦ You could also say: 3n + 2 is O(5n - 3log(n) + 17)
◦ And it would be technically correct…
◦ It would also be poor taste … and your grade will

reflect that.

} By definition, applied to functions.
“f(n) = n2/2 + n/2 – 1 is Θ(n2)”

} Can also be applied to an algorithm, referencing its
running time: e.g., when f(n) describes the number of
executions of the most-executed line of code.

“selection sort is Θ(n2)”

} Finally, can be applied to a problem, referencing its
complexity: the running time of the best algorithm that
solves it.

“The sorting problem is O(n2)”

} There are times when one might choose a
higher-order algorithm over a lower-order
one.

} Brainstorm some ideas to share with the class

C.A.R. Hoare, inventor of quicksort, wrote:
Premature optimization is the root of all evil.

Q6

A deceptively deep problem
with a surprising solution.

{-3, 4, 2, 1, -8, -6, 4, 5, -2}

} Problem: Given a sequence of numbers, find
the maximum sum of a contiguous
subsequence.

} Why study?
} Positives and negatives make it interesting.

Consider:
◦ What if all the numbers were positive?
◦ What if they all were negative?
◦ What if we left out “contiguous”?

} Analysis of obvious solution is neat
} We can make it more efficient later.

Q7-10

} Problem definition: given a nonempty sequence
of n (possibly negative) integers 𝐴!, 𝐴", 𝐴#, … , 𝐴$%",
find the maximum contiguous subsequence

𝑆&,(=&
)*&

(

𝐴)

and the corresponding values of 𝑖 and 𝑗.

} Quiz questions:
◦ In {-2, 11, -4, 13, -5, 2}, S1,3 = ?
◦ In {1, -3, 4, -2, -1, 6}, what is MCSS?
◦ If every element is negative, what’s the MCSS?

◦ Must be easy to explain
◦ Correctness is KING. Efficiency doesn’t matter yet.
◦ 3 minutes

} Examples to consider:
◦ {-3, 4, 2, 1, -8, -6, 4, 5, -2}
◦ {5, 6, -3, 2, 8, 4, -12, 7, 2}

Q11

Where
will this
algorithm
spend the
most
time?

How many times
(exactly, as a function of
N = a.length) will that
statement execute?

i: beginning of
subsequence

j: end of
subsequence

k: steps through
each element of
subsequence

Find the sums of
all subsequences

} What statement is executed the most often?
} How many times?

Q12

for(int i = 0; i < a.length; i++) {
for(int j = i; j < a.length; j++) {

int thisSum = 0;
for (int k = i; k <= j; k++) {

thisSum += a[k];
}
// update max if thisSum is better

}
}

} We showed MCSS is O(n3).
◦ Showing that a problem is O(g(n)) is relatively easy – just

analyze a known algorithm.

} Is MCSS W(n3)?
◦ Showing that a problem is W (g(n)) is much tougher. How do

you prove that it is impossible to solve a problem more
quickly than you already can?

◦ Or maybe we can find
a faster algorithm?

for(int i = 0; i < a.length; i++) {
for(int j = i; j < a.length; j++) {

int thisSum = 0;
for (int k = i; k <= j; k++) {

thisSum += a[k];
}
// update max if thisSum is better

}
}

} The performance is bad!

This is Θ(?)

for(int i = 0; i < a.length; i++) {
int thisSum = 0;
for(int j = i; j < a.length; j++) {

thisSum += a[j];
// update max if thisSum is better

}
}

} Remember the previous sum so we don’t have to recompute it!

} Is MCSS W(n2)?
◦ Showing that a problem is W (g(n)) is much tougher. How do

you prove that it is impossible to solve a problem more
quickly than you already can?

◦ Can we find a yet faster algorithm?

Tune in next time for the
exciting conclusion!

Q14-15

