
Maximum Contiguous Subsequence Sum
How to balance code simplicity and efficiency?

After today’s class you will be able to:
state and solve the MCSS problem on small arrays by observation
find the exact runtimes of the naive MCSS algorithms
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} Homework 1 due tonight
◦ Lots of help available today if still working. 

Instructors, Lab TAs, CampusWire

} WarmUpAndStretching due after next class
◦ Iterators? Read code comments, or Weiss Ch. 1-4.

} Reading for Day 4: Why Math?



} Finish up big-O, so you can 
◦ explain the meaning of big-O, big-Omega (W), and 

big-Theta (Θ)
◦ apply the definition of big-O to asymptotically 

analyze functions, and running time of algorithms

} Analyze algorithms for a sample problem, 
Maximum Contiguous Subsequence Sum 
(MCSS), so you can
◦ state and solve the MCSS problem on small arrays by 

observation
◦ find the exact runtimes of the naive MCSS algorithms



Big-O
Big-Omega
Big-Theta



} f(n) is O(g(n)) if there exist c, n0 such that:
f(n) ≤ cg(n) for all n ≥ n0

◦ So big-Oh (O) gives an upper bound

} f(n) is W(g(n)) if there exist c, n0 such that:
f(n) ≥ cg(n) for all n ≥ n0

◦ So big-omega (W) gives a lower bound

} f(n) is Θ(g(n)) if it is both O(g(n)) and W(g(n))
Or equivalently:

} f(n) is Θ(g(n)) if there exist c1, c2, n0 such that:
c1g(n) ≤ f(n) ≤ c2g(n) for all n ≥ n0

◦ So big-theta (Θ) gives a tight bound
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} Give tightest bound you can
◦ Saying 3n + 2 is O(n3) is true*, but not as precise as 

saying it’s O(n)
◦ *When we ask for true/false, use the definitions.
◦ And when analyzing code, we’ll just ask for Θ to be 

clear.

} Simplify:
◦ You could also say: 3n + 2 is O(5n - 3log(n) + 17)
◦ And it would be technically correct…
◦ It would also be poor taste … and your grade will 

reflect that.



} By definition, applied to functions.
“f(n) = n2/2 + n/2 – 1    is   Θ(n2)”

} Can also be applied to an algorithm, referencing its 
running time: e.g., when f(n) describes the number of 
executions of the most-executed line of code.

“selection sort is Θ(n2)”

} Finally, can be applied to a problem, referencing its 
complexity: the running time of the best algorithm that 
solves it.

“The sorting problem is O(n2)”



} There are times when one might choose a 
higher-order algorithm over a lower-order 
one.

} Brainstorm some ideas to share with the class

C.A.R. Hoare, inventor of quicksort, wrote:
Premature optimization is the root of all evil.
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A deceptively deep problem 
with a surprising solution.

{-3, 4, 2, 1, -8, -6, 4, 5, -2}



} Problem: Given a sequence of numbers, find 
the maximum sum of a contiguous 
subsequence.

} Why study?
} Positives and negatives make it interesting. 

Consider:
◦ What if all the numbers were positive?
◦ What if they all were negative?
◦ What if we left out “contiguous”?

} Analysis of obvious solution is neat
} We can make it more efficient later.
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} Problem definition: given a nonempty sequence 
of n (possibly negative) integers 𝐴!, 𝐴", 𝐴#, … , 𝐴$%", 
find the maximum contiguous subsequence

𝑆&,( =&
)*&

(

𝐴)

and the corresponding values of 𝑖 and 𝑗.

} Quiz questions:
◦ In {-2, 11, -4, 13, -5, 2}, S1,3 = ?
◦ In {1, -3, 4, -2, -1, 6}, what is MCSS?
◦ If every element is negative, what’s the MCSS?



◦ Must be easy to explain
◦ Correctness is KING. Efficiency doesn’t matter yet.
◦ 3 minutes

} Examples to consider:
◦ {-3, 4, 2, 1, -8, -6, 4, 5, -2}
◦ {5, 6, -3, 2, 8, 4, -12, 7, 2} 
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Where 
will this 
algorithm 
spend the 
most 
time?

How many times 
(exactly, as a function of 
N = a.length) will that 
statement execute?

i: beginning of 
subsequence

j: end of 
subsequence

k: steps through 
each element of 
subsequence

Find the sums of 
all subsequences



} What statement is executed the most often?
} How many times?

Q12

for(int i = 0; i < a.length; i++) {
for(int j = i; j < a.length; j++) {

int thisSum = 0;
for (int k = i; k <= j; k++) {

thisSum += a[k];
}
// update max if thisSum is better

}
}



} We showed MCSS is O(n3). 
◦ Showing that a problem is O(g(n)) is relatively easy – just 

analyze a known algorithm.

} Is MCSS W(n3)? 
◦ Showing that a problem is W (g(n)) is much tougher. How do 

you prove that it is impossible to solve a problem more 
quickly than you already can?

◦ Or maybe we can find 
a faster algorithm?



for(int i = 0; i < a.length; i++) {
for(int j = i; j < a.length; j++) {

int thisSum = 0;
for (int k = i; k <= j; k++) {

thisSum += a[k];
}
// update max if thisSum is better

}
}

} The performance is bad!



This is Θ(?)

for(int i = 0; i < a.length; i++) {
int thisSum = 0;
for(int j = i; j < a.length; j++) {

thisSum += a[j];
// update max if thisSum is better

}
}

} Remember the previous sum so we don’t have to recompute it!



} Is MCSS W(n2)? 
◦ Showing that a problem is W (g(n)) is much tougher. How do 

you prove that it is impossible to solve a problem more 
quickly than you already can?

◦ Can we find a yet faster algorithm?



Tune in next time for the 
exciting conclusion!

Q14-15


