Q] _31
4a

CSSE 230 Day 3

Maximum Contiguous Subsequence Sum
How to balance code simplicity and efficiency?

After today’s class you will be able to:

state and solve the MCSS problem on small arrays by observation
find the exact runtimes of the naive MCSS algorithms

https://openclipart.org/image/2400px/svg_to_png/169467 /bow_tie.png

Announcements

» Homework 1 due tonight

- Lots of help available today if still working.
Instructors, Lab TAs, CampusWire

» WarmUpAndStretching due after next class
> Iterators? Read code comments, or Weiss Ch. 1-4.

» Reading for Day 4: Why Math?

Agenda and goals

» Finish up big-0, so you can
- explain the meaning of big-0O, big-Omega (), and
big-Theta (0)
- apply the definition of big-O to asymptotically
analyze functions, and running time of algorithms

» Analyze algorithms for a sample problem,
Maximum Contiguous Subsequence Sum
(MCSS), so you can

- state and solve the MCSS problem on small arrays by
observation

> find the exact runtimes of the naive MCSS algorithms

Asymptotics: The “Big”
Three

Big-O
Big-Omega
Big-Theta

Q4-5

Big-0, Big-Omega, Big-Theta
O() Q() O()

» f(n) is O(g(n)) if there exist ¢, ny such that:

f(n) < cg(n) for all n = ng
> So big-Oh (O) gives an upper bound

» f(n) is Q(g(n)) if there exist ¢, ny such that:
f(n) > cg(n) for all n = ng
> S0 big-omega (Q) gives a lower bound

» f(n) is ©(g(n)) if it is both O(g(n)) and Q(g(n))
Or equivalently:
» f(n) is ©(g(n)) if there exist ¢;, C,, ny such that:
c;g(n) < f(n) < c,g(n) for all n = n,
> So big-theta (©) gives a tight bound

Big-Oh Style

» Give tightest bound you can
> Saying 3n + 2 is O(3) is true*, but not as precise as
saying it’s O(n)
- *When we ask for true/false, use the definitions.

- And when analyzing code, we’ll just ask for © to be
clear.

» Simplify:
> You could also say: 3n+ 2 is O(5n - 3log(n) + 17)

- And it would be technically correct...

> It would also be poor taste ... and your grade will
reflect that.

Uses of O, Q, ©

» By definition, applied to functions.
“fn) = n?/2 + n/2-1 is O(n?)”

» Can also be applied to an a/gorithm, referencing its
running time: e.g., when f(n) describes the number of
executions of the most-executed line of code.

“selection sort is ©@(n?)”

» Finally, can be applied to a prob/em, referencing its
complexity: the running time of the best algorithm that
solves it.

“The sorting problem is O(n?)”

Q6
Efficiency in context

» There are times when one might choose a
higher-order algorithm over a lower-order
one.

» Brainstorm some ideas to share with the class

C.A.R. Hoare, inventor of quicksort, wrote:
Premature optimization is the root of all evil.

Maximum Contiguous
Subsequence Sum

A deceptively deep problem
with a surprising solution.

{_31 4! 21]1 _81 _6! 4! 5! _2}

A Nice Algorithm Analysis Example

» Problem: Given a sequence of numbers, find

the

subsequence.
» Why study? U

maximum sum of a contiguous

» Positives and negatives make it interesting.
Consider:

> W
> W
> W

nat if all the numbers were positive?
nat if they all were negative?

nat if we left out “contiguous™

» Analysis of obvious solution is neat

» We

can make it more efficient later.

Q7-10
Formal Definition of MCSS

» Problem definition: given a nonempty sequence
of n (possibly negative) integers A4y,44,4,,...,A,_1,
find the maximum contiguous subsequence

J
Si,j — Z Ak
k=i

and the corresponding values of i and j.

» Quiz questions:
°In{-2,11,-4,13,-5,2}, S5 =7
- In{1, -3, 4, -2, -1, 6}, what is MCSS?
- If every element is negative, what’s the MCSS?

Write a simple correct algorithm Q11
now

- Must be easy to explain
> Correctness is KING. Efficiency doesn’t matter yet.
> 3 minutes

» Examples to consider:
° {_31 41 21]1 _8’ _6! 41 51 _2}
0{516! _31218! 4!_]21 71 2}

First AlgOnthm Find the sums of
all subsequences

public final class MaxSubTest ({
private static int seqgStart = 0;
private static int seqEnd = 0;

/* First maximum contiguous subsegquence sum algorithm.
* segStart and segEnd represent the actual best sequence.

*/
public static int maxSubSuml(int [] a) {
i: beginning of _| int maxSum = 0; Where

subsequence wgallalysis we use "n" as a shorthand for "a length . .
a for(in® i = 0; i < a.length; i++) " will this

- for(inty,j = i; j < a.length; j++) { | aloorithm
j:- end of .- int thisSum = 0; 5
spend the

subsequence | | |
for(:Lntsk =+i; k §= J.; k++) most
k: steps through /f(ls' um +=al k 1/ —

time
each element of if(thisSum > maxSum) {

subsequence maxSum = thisSum;
seqStart = 1i;
seqgEnd = j; How many times
\ } (exactly, as a function of
return maxSum; N = a.length) will that
} statement execute?

Q12
Analysis of this Algorithm

» What statement is executed the most often?
» How many times?

for(int 1 = 0; i < a.length; i++) {
for(int j = i; j < a.length; j++) {
int thisSum = 0;
for (int k = i; k <= j; k++) {
thisSum += a[k];

}
// update max if thisSum is better

Where do we stand?

» We showed MCSS is O(n3).

- Showing that a problem is O(g(n)) is relatively easy - just
analyze a known algorithm.

» Is MCSS Q(n3)?

- Showing that a problem is Q (g(n)) is much tougher. How do
you prove that it is impossible to solve a problem more
quickly than you already can?

_ f(n) is O(g(n)) if f(n) < cg(n) for all n = n,
> Or maybe we can find |- so 0 gives an upper bound
a faster algorithm? f(n) is Q(g(n)) if f(n) = cg(n) for all n = n,
> So Q gives a lower bound
f(n) is 6(g(n)) if c,g(n) < f(n) < c,g(n) for all n = n,
> So 0 gives a tight bound
> f(n) is 6(g(n)) if it is both O(g(n)) and Q(g(n))

What is the main source of the simple
algorithm’s inefficiency?

for(int i = 9; i < a.length; i++) {
for(int j = i; j < a.length; j++) {
int thisSum = 0;
for (int k = i; k <= j; k++) {
thisSum += a[k];

}
// update max if thisSum is better

¥

» The performance is bad!

Eliminate the most obvious
inefficiency...

for(int i = 9; i < a.length; i++) {
int thisSum = 0;
for(int j = i; j < a.length; j++) {
thisSum += a[j];
// update max if thisSum is better

¥

» Remember the previous sum so we don’t have to recompute it!

This is O(?)

MCSS is O(n?)

» Is MCSS Q(n?)?

> Showing that a problem is © (g(n)) is much tougher. How do
you prove that it is impossible to solve a problem more
quickly than you already can?

- Can we find a yet faster algorithm?

f(n) is O(g(n)) if f(n) < cg(n) for all n = n,

> So O gives an upper bound

f(n) is Q(g(n)) if f(n) = cg(n) for all n = n,

> So Q gives a lower bound

f(n) is 6(g(n)) if c,g(n) < f(n) < c,g(n) for all n = n,
> So 0 gives a tight bound

> f(n) is 6(g(n)) if it is both O(g(n)) and Q(g(n))

Can we do even better?

Tune in next time for the

exciting conclusion!

