After today's class you will be able to:
state and solve the MCSS problem on small arrays by observation find the exact runtimes of the naive MCSS algorithms

Announcements

- Homework 1 due tonight
- Lots of help available today if still working. Instructors, Lab TAs, CampusWire
- WarmUpAndStretching due after next class - Iterators? Read code comments, or Weiss Ch. 1-4.
- Reading for Day 4: Why Math?

Agenda and goals

- Finish up big-O, so you can
- explain the meaning of big-O, big-Omega (Ω), and big-Theta (Θ)
- apply the definition of big-O to asymptotically analyze functions, and running time of algorithms
- Analyze algorithms for a sample problem, Maximum Contiguous Subsequence Sum (MCSS), so you can
- state and solve the MCSS problem on small arrays by observation
- find the exact runtimes of the naive MCSS algorithms

Asymptotics: The "Big" Three

Big-O
Big-Omega
Big-Theta

Big-O, Big-Omega, Big-Theta O()

 Ω ()

 Ω ()

 Θ ()

 Θ ()}

- $f(n)$ is $O(g(n))$ if there exist c, n_{0} such that:

$$
f(n) \leq c g(n) \text { for all } n \geq n_{0}
$$

- So big-Oh (O) gives an upper bound
- $f(n)$ is $\Omega(g(n))$ if there exist c, n_{0} such that:

$$
f(n) \geq c g(n) \text { for all } n \geq n_{0}
$$

- So big-omega (Ω) gives a lower bound
- $f(n)$ is $\Theta(g(n))$ if it is both $O(g(n))$ and $\Omega(g(n))$

Or equivalently:

- $f(n)$ is $\Theta(g(n))$ if there exist c_{1}, c_{2}, n_{0} such that:

$$
c_{1} g(n) \leq f(n) \leq c_{2} g(n) \text { for all } n \geq n_{0}
$$

- So big-theta (Θ) gives a tight bound

Big-Oh Style

- Give tightest bound you can
- Saying $3 n+2$ is $\mathrm{O}\left(n^{3}\right)$ is true*, but not as precise as saying it's O(n)
- *When we ask for true/false, use the definitions.
- And when analyzing code, we'll just ask for Θ to be clear.
- Simplify:
- You could also say: $3 n+2$ is $O(5 n-3 \log (n)+17)$
- And it would be technically correct...
- It would also be poor taste ... and your grade will reflect that.

Uses of $\mathrm{O}, \Omega, \Theta$

- By definition, applied to functions.

$$
" f(n)=n^{2} / 2+n / 2-1 \text { is } \Theta\left(n^{2}\right) "
$$

- Can also be applied to an algorithm, referencing its running time: e.g., when $f(n)$ describes the number of executions of the most-executed line of code.
"selection sort is $\Theta\left(n^{2}\right)$ "
- Finally, can be applied to a problem, referencing its complexity: the running time of the best algorithm that solves it.
"The sorting problem is $\mathrm{O}\left(\mathrm{n}^{2}\right)$ "

Efficiency in context

- There are times when one might choose a higher-order algorithm over a lower-order one.
- Brainstorm some ideas to share with the class
C.A.R. Hoare, inventor of quicksort, wrote:

Premature optimization is the root of all evil.

Maximum Contiguous Subsequence Sum

A deceptively deep problem with a surprising solution.
$\{-3,4,2,1,-8,-6,4,5,-2\}$

A Nice Algorithm Analysis Example

- Problem: Given a sequence of numbers, find the maximum sum of a contiguous subsequence.
- Why study?

- Positives and negatives make it interesting. Consider:
- What if all the numbers were positive?
- What if they all were negative?
- What if we left out "contiguous"?
- Analysis of obvious solution is neat
- We can make it more efficient later.

Formal Definition of MCSS

- Problem definition: given a nonempty sequence of n (possibly negative) integers $A_{0}, A_{1}, A_{2}, \ldots, A_{n-1}$, find the maximum contiguous subsequence

$$
S_{i, j}=\sum_{k=i}^{j} A_{k}
$$

and the corresponding values of i and j.

- Quiz questions:
- $\operatorname{In}\{-2,11,-4,13,-5,2\}, S_{1,3}=$?
- In $\{1,-3,4,-2,-1,6\}$, what is MCSS?
- If every element is negative, what's the MCSS?

Write a simple correct algorithm now

- Must be easy to explain
- Correctness is KING. Efficiency doesn't matter yet.
- 3 minutes
- Examples to consider:

。 $\{-3,4,2,1,-8,-6,4,5,-2\}$

- $\{5,6,-3,2,8,4,-12,7,2\}$

First Algorithm

Find the sums of a// subsequences

> public final class MaxSubTest $\{$ private static int seqStart $=0 ;$ private static int seqEnd $=0 ;$
/* First maximum contiguous subsequence sum algorithm. * seqStart and seqEnd represent the actual best sequence. */

Analysis of this Algorithm

-What statement is executed the most often?

- How many times?

```
for(int i = 0; i < a.length; i++) {
    for(int j = i; j < a.length; j++) {
    int thisSum = 0;
    for (int k = i; k <= j; k++) {
                        thisSum += a[k];
    }
    // update max if thisSum is better
    }
}
```


Where do we stand?

- We showed MCSS is $O\left(n^{3}\right)$.
- Showing that a problem is $\mathrm{O}(\mathrm{g}(\mathrm{n})$) is relatively easy - just analyze a known algorithm.
- Is MCSS $\Omega\left(\mathrm{n}^{3}\right)$?
- Showing that a problem is $\Omega(\mathrm{g}(\mathrm{n})$) is much tougher. How do you prove that it is impossible to solve a problem more quickly than you already can?
- Or maybe we can find

```
f(n) is O(g(n)) if f(n) \leqcg(n) for all n \geq no
    So O gives an upper bound
f(n) is \Omega(g(n)) if f(n)\geqcg(n) for all n \geq no
    So \Omega gives a lower bound
f(n) is 0(g(n)) if c
    So 0 gives a tight bound
    f(n) is 0(g(n)) if it is both O(g(n)) and \Omega(g(n))
```

```
What is the main source of the simple algorithm's inefficiency?
for(int \(i=0 ; i<a . l e n g t h ; i++)\{\)
    for(int j = i; j < a.length; j++) \{
    int thisSum \(=0\);
    for (int k = i; k <= j; k++) \{
    thisSum += a[k];
    \}
    // update max if thisSum is better
    \}
\}
```

- The performance is bad!

```
Eliminate the most obvious inefficiency...
for(int i = 0; i < a.length; i++) {
    int thisSum = 0;
    for(int j = i; j< a.length; j++) {
    thisSum += a[j];
    // update max if thisSum is better
    }
}
```

- Remember the previous sum so we don't have to recompute it!

MCSS is $\mathrm{O}\left(\mathrm{n}^{2}\right)$

- Is MCSS $\Omega\left(\mathrm{n}^{2}\right)$?
- Showing that a problem is $\Omega(\mathrm{g}(\mathrm{n}))$ is much tougher. How do you prove that it is impossible to solve a problem more quickly than you already can?
- Can we find a yet faster algorithm?

```
\(f(n)\) is \(O(g(n))\) if \(f(n) \leq c g(n)\) for all \(n \geq n_{0}\)
    So O gives an upper bound
\(\mathrm{f}(\mathrm{n})\) is \(\Omega\left(\mathrm{g}(\mathrm{n})\right.\) ) if \(\mathrm{f}(\mathrm{n}) \geq \mathrm{cg}(\mathrm{n})\) for all \(\mathrm{n} \geq \mathrm{n}_{0}\)
    So \(\Omega\) gives a lower bound
\(f(n)\) is \(\theta(g(n))\) if \(c_{1} g(n) \leq f(n) \leq c_{2} g(n)\) for all \(n \geq n_{0}\)
    So \(\theta\) gives a tight bound
    \(\mathrm{f}(\mathrm{n})\) is \(\theta(\mathrm{g}(\mathrm{n})\) ) if it is both \(\mathrm{O}(\mathrm{g}(\mathrm{n})\) ) and \(\Omega(\mathrm{g}(\mathrm{n}))\)
```


Can we do even better?

Tune in next time for the exciting conclusion!

