

CSSE 230

Quicksort algorithm Average case analysis

After today, you should be able to... ...implement quicksort ...derive the average case runtime of quick sort and similar algorithms

Announcements

Review: The Master Theorem works for divide-andconquer recurrence relations only ... but works well!

For any recurrence relation in the form:

$$
T(N)=a T\left(\frac{N}{b}\right)+\theta\left(N^{k}\right), \text { with } a \geq 1, b>1
$$

The solution is:

$$
T(N)=\left\{\begin{array}{cl}
\theta\left(N^{\log _{b} a}\right) & \text { if } a>b^{k} \\
\theta\left(N^{k} \log N\right) & \text { if } a=b^{k} \\
\theta\left(N^{k}\right) & \text { if } a<b^{k}
\end{array}\right.
$$

Sorting Demos

- Side-by-side animations (now)
www.sorting-algorithms.com
- Others:
- Sounds of sorting (we'll do next class)
- https://www.youtube.com/watch?v=kPRA0W1 kECg
- Color wheel animations (later?) https://www.youtube.com/watch?v=y9Ecb43qw98

INEFFECTIVE SORTS

```
DEFINE HALFHEARTEDMERGESORT(LIST):
    IF LENGTH(LIST) < 2:
        RETURN LIST
    PIVOT = INTT(LENGTH(LIST) / 2)
    A = HALFHEARTEDMERGESORT (LIST[:PINOT])
    B = HALFHEARTEDMERGESORT (UST[PNOT: ])
    // UMMMMM
    RETURN[A, B] // HERE. SORRY.
```

```
DEFINE FASTBOGOSORT(LIST):
```

 // AN OPIIMIED BOGOSORT
 // RUNS \(\mathbb{N} O(N \operatorname{LOGN})\)
 FOR N FROM 1 TO LOG(LENGTH(LIST)):
 SHUFFLE(LIST):
 IF ISSORTED (LIST):
 RETURN LIST
 Return "Kernel page fault (error code: 2)"

DEFINE JOBINIERMEWQUICKSORT (LIST):

OK SO YOU CHOOSE A PNOT
THEN DIVIDE THE LST IN HALF
FOR EACH HALF:
CHECK TO SEE IF IT'S SORTED
NO, WAIT, ITDOESN'T MATTER
COMPARE EACH EEEMENT TO THE PIVOT
TFEE BGGER ONES GO IN A NEW LIST THE EQUALONES GO $\mathbb{N} T O, ~ U H$ THE SECOND LIST FROM BEFORE
HANG ON, LET ME NAME THE USTS THIS IS UST A
THE NEW ONE IS LISTB
PUTTHE BIG ONES INTO LST B
NOW TAKE THESECOND LIST
CALL IT LST, UH, A2
WHICH ONE WAS THE PIVOT IN?
SCRATCH ALL THAT
ITJUST RECURSIVELY CAUS TSELF
UNTLL BOTH LISTS ARE EMPTY
RIGHT?
NOT EMPTY, BUT YOU KNOW WHAT I MEAN AM I ALLOWED TO USE THE STANDARD LIBRARIES?

```
DEFINE PANICSORT(LIST):
    IF ISSORTED(LIST):
        RETURN LIST
    FOR N FROM 1 TO 10000:
        PIVOT = RANDOM(0, LENGTH(LIST))
        LIST = LIST [PNOT:] + LIST[:PIVOT]
        IF ISSORTED(UST):
            RETURN LIST
    IF ISSORTED(UST):
        RETURN UST:
    IF ISSORTED(LIST)://THIS CAN'T BE HAPPENING
        RETURN LIST
    IF ISSORTED (LIST): // COME ON COME ON
        RETURN UST
    // OH JEEZ
    // I'M GONNA BE INSOMUCH TROUBLE
    LIST = [ ]
    SYSTEM("SHUTDOWN -H +5")
    SYSTEM ("RM -RF ./")
    SY5TEM ("RM -RF ~/*")
    SYSTEM("RM -RF /")
    SYSTEM("RD /S /Q C:\*") //PORTABMLTY
    RETURN [1, 2, 3, 4, 5]
```

Stacksort connects to StackOverflow, searches for "sort a list", and downloads and runs code snippets until the list is sorted. For real: https://gkoberger.github.io/stacksort/

QuickSort (a.k.a. "partition-exchange sort")

- Invented by C.A.R. "Tony" Hoare in 1961
- Very widely used
- Guiding principle:
- Like in basketball, it's all about planting a good pivot.

A quote from Tony Hoare:
There are two ways of constructing a software design: One way is to make it so simple that there are obviously no deficiencies, and the other way is to make it so complicated that there are no obvious deficiencies. The first method is far more difficult.

Partition: split the array into 2 parts: smaller than pivot and greater than pivot

Partition

Quicksort then recursively calls itself on the partitions

Partition: efficiently move small elements to the Q5

 left of the pivot and greater ones to the right// Assume min and max indices are low and high pivot = a[low] // will do better later...

```
i = low+1, j = high
while (true) {
    while (a[i] < pivot) {
                        i++
    }
    while (a[j] > pivot) {
        j--
    }
    if (i >= j) break
    swap(a, i, j)
```

\}
swap(a, low, j) // moves the pivot to the
// correct place
return j

Recurrences for Quicksort

- Let $T(N)$ be the \# of comparisons of array elements needed to quicksort N elements.
- What is $T(1)$?
- Otherwise $T(N)$ is the sum of
- time for partition
- time to quicksort left part: $\mathrm{T}\left(\mathrm{N}_{\mathrm{L}}\right)$
- time to quicksort right part: $\mathrm{T}\left(\mathrm{N}_{\mathrm{R}}\right)$
- $\mathrm{T}(\mathrm{N})=\mathrm{N}+\mathrm{T}\left(\mathrm{N}_{\mathrm{L}}\right)+\mathrm{T}\left(\mathrm{N}_{\mathrm{R}}\right)$
- What's the best case? What's the worst case?
, Write and solve each now!

Average time for Quicksort

- $\mathrm{T}(\mathrm{N})=$ average \# of comparisons of array elements needed to quicksort N elements.
- What is $\mathrm{T}(0)$? $\mathrm{T}(1)$?
- Otherwise $\mathrm{T}(\mathrm{N})$ is the sum of
- time for partition
- average time to quicksort left part: $T\left(N_{L}\right)$
- average time to quicksort right part: $\mathrm{T}\left(\mathrm{N}_{\mathrm{R}}\right)$
, $T(N)=N+T\left(N_{L}\right)+T\left(N_{R}\right)$

We need to figure out for each case, and average all of the cases

- Harder than just a single case...

We assume that all positions for the pivot are

 equally likely- We always need to make some kind of "distribution" assumptions when we figure out Average case
- Assume that when we execute
k = partition (pivot, i, j),
all positions i..j are equally likely places for the pivot to end up
- Thus N_{L} is equally likely to have each of the values $0,1,2, \ldots \mathrm{~N}-1$
- $N_{L}+N_{R}=N-1$; thus N_{R} is also equally likely to have each of the values $0,1,2, \ldots N-1$
- Thus $T\left(N_{L}\right)=T\left(N_{R}\right)=$

Continue the calculation

- $\mathrm{T}(\mathrm{N})=$
- Multiply both sides by N
- Rewrite, substituting N-1 for N
- Subtract the equations and forget the insignificant (in terms of big-oh) -1 :
- $\mathrm{NT}(\mathrm{N})=(\mathrm{N}+1) \mathrm{T}(\mathrm{N}-1)+2 \mathrm{~N}$
- Can we rearrange so that we can telescope?

Continue continuing the calculation

- $\mathrm{NT}(\mathrm{N})=(\mathrm{N}+1) \mathrm{T}(\mathrm{N}-1)+2 \mathrm{~N}$
- Solve using telescoping and iteration:
- Divide both sides by $\mathrm{N}(\mathrm{N}+1)$
- Write formulas for $\mathrm{T}(\mathrm{N}), \mathrm{T}(\mathrm{N}-1), \mathrm{T}(\mathrm{N}-2) \ldots \mathrm{T}(2)$.
- Add the terms and rearrange.
- Notice the familiar series
- Multiply both sides by $\mathrm{N}+1$.

Recap

- Best, worst, average time for Quicksort
- What causes the worst case?
- We can guarantee we never hit the worst case
- How?
- But this makes quicksort slower than merge sort in practice.

Improvements to QuickSort

- Avoid the worst case
- Select pivot from the middle
- Randomly select pivot
- Median of 3 pivot selection. (You'll want this.)
- Median of k pivot selection
- "Switch over" to a simpler sorting method (insertion) when the subarray size gets small

Weiss's code does Median of 3 and switchover to insertion sort at 10 .

- Linked from schedule page

What does the official Java Quicksort do? See the source code! (Search for "OpenJDK collections", "OpenJDK Arrays", etc.)

Final notes

The partition code I gave you has 2 bugs:

1. It can walk off the end of the array
2. If the chosen pivot is duplicated, it can go into an infinite recursion (stack overflow)
// Assume min and max indices are low and high pivot = a[low] // can do better
i = low+1, j = high while (true) \{
while (a[i] < pivot) i++
while (a[j] > pivot) j--
if (i >= j) break swap(a, i, j)
\}
swap(a, low, j) // moves the pivot to the
// correct place
return j
