
How can we solve recurrence relations?
How many ways can we sort arrays?

After today, you should be able to…
…write recurrences for code snippets
…solve recurrences using telescoping,
recurrence trees, and the master method

T (N) =

8
><

>:

✓(N logba) if a > bk

✓(NklogN) if a = bk

✓(Nk) if a < bk

A technique for analyzing
recursive algorithms

} An equation (or inequality) that relates the
Nth element of a sequence to certain of its
predecessors (recursive case)

} Includes an initial condition (base case)
} Solution: A function of N.

Example. Solve using backward substitution.

T(N) = 2T(N/2) + N
T(1) = 1

Forward substitution
Backward substitution

Recurrence trees

Telescoping

Master Theorem

Simple
Sometimes can’t solve
difficult relations Visual

Great intuition for div-and-conquer

Widely applicable
Difficult to formulate
Not intuitive

Immediate
Only for div-and-conquer
Only gives Big-ThetaWhich

telescope?
http://wiki.ogre3d.org/Mipmapping

What’s N?

1

What’s N?

} Basic idea: Set up equations so that when we sum
all L sides and all R sides, we get an equation
with lots of cancelation.

} Example: T(1) = 0, T(N) = T(N – 1) + N – 1

2

} In general, need to tweak the relation
somehow so successive terms cancel

} Example: T(1) = 1, T(N) = 2T(N/2) + N
where N = 2k for some k

} Divide by N to get a “piece of the telescope”:

3

Etc.

4

N

N/2

N/4 N/4

N/2

N/4 N/4

⋮ ⋮ ⋮ ⋮ ⋮

1 1 1 1 1 1 1 1 1 … 1 1 1

Level

0

1

2

⋮
?

• How many nodes at level i?
• How much work at level i?
• Index of last level?

2i

2i (N/2i) = N
log2 N

Total:

Recurrence:
T(N) = 2T(N/2) + N
T(1) = 1

} For Divide-and-conquer algorithms
◦ Divide data into one or more parts of the same size
◦ Solve problem on one or more of those parts
◦ Combine "parts" solutions to solve whole problem

} Examples
◦ Binary search
◦ Merge Sort
◦ MCSS recursive algorithm we studied last time

Theorem 7.5 in Weiss

5

Theorem 7.5 in Weiss

5–7

} For any recurrence in the form:

} The solution is

Example: 2T(N/4) + N

T (N) =

8
><

>:

✓(N logba) if a > bk

✓(NklogN) if a = bk

✓(Nk) if a < bk

T (N) = aT (N/b) + ✓(Nk)

with a � 1, b > 1

cNk

c(N/b)k

c(N/b2)k c(N/b2)k c(N/b2)k

c(N/b)k

c(N/b2)k c(N/b2)k c(N/b2)k

c(N/b)k

c(N/b2)k c(N/b2)k c(N/b2)k

⋮ ⋮ ⋮ ⋮ ⋮
⋮ ⋮ ⋮ ⋮

c c c c c c c c c c c c … c c c

• How many nodes at level i?
• How much work at level i?
• Index of last level?

ai

ai c(N/bi)k = cNk(a/bk)i
logb N

Recurrence:
T(N) = aT(N/b) + cNk

T(1) ≤ c

…

…

…… …

Level

0

1

2

⋮
?

Summation:

} Upper bound on work at level i:

} a = “Rate of subproblem proliferation” 😟

} bk = “Rate of work shrinkage” 😃

Case 😟 a < bk😃 😟 a = bk😃 😟 a > bk😃

As level i
increases…

😃 work goes
down!

😐 work stays
same

😟 work goes
up!

T(N) dominated
by work done
at…

Root of tree Every level
similar

Leaves of tree

Master Theorem
says T(N) in…

Θ(Nk) Θ(Nk log N) Θ(Nlogba)

} Case 1. a < bk

} Case 2. a = bk

} Case 3. a > bk

cNk

logb NX

i=0

1 = cNk(logb N + 1) ⇥(Nk logN)

cNk

logb NX

i=0

⇣ a

bk

⌘i

cNk

✓
(a/bk)logb N+1 � 1

(a/bk)� 1

◆
⇡ cNk(a/bk)logb N = calogb N = cN logb a

cNk

✓
1� (a/bk)logb N+1

1� (a/bk)

◆
⇡ cNk

✓
1

1� (a/bk)

◆

} Analyze code to determine relation
◦ Base case in code gives base case for relation
◦ Number and “size” of recursive calls determine

recursive part of recursive case
◦ Non-recursive code determines rest of recursive

case
} Apply a strategy
◦ Guess and check (substitution)
◦ Telescoping
◦ Recurrence tree
◦ Master theorem

Quick look at several sorting
methods
Focus on quicksort
Quicksort average case analysis

} Name as many as you can
} How does each work?
} Running time for each (sorting N items)?
◦ best
◦ worst
◦ average
◦ extra space requirements

} Spend 10 minutes with a group of 2-3, answering
these questions. Then we will summarize

Put list on board

8–10

ht
tp
:/
/w
w
w
.x
kc
d.
co
m
/1
18
5/

Stacksort connects to StackOverflow, searches for “sort a list”,
and downloads and runs code snippets until the list is sorted.

