

CSSE 230

How can we solve recurrence relations? How many ways can we sort arrays?

$$T(N) = \begin{cases} \theta(N^{\log_b a}) & \text{if } a > b^k \\ \theta(N^k \log N) & \text{if } a = b^k \\ \theta(N^k) & \text{if } a < b^k \end{cases}$$

After today, you should be able to... ...write recurrences for code snippets ...solve recurrences using telescoping, recurrence trees, and the master method

More on Recurrence Relations

A technique for analyzing recursive algorithms

Recap: Recurrence Relation

- An equation (or inequality) that relates the Nth element of a sequence to certain of its predecessors (recursive case)
- Includes an initial condition (base case)
- **Solution**: A function of N.

Example. Solve using backward substitution.

T(N) = 2T(N/2) + NT(1) = 1

Solution strategies

Forward substitution Backward substitution

Simple Sometimes can't solve difficult relations

Recurrence trees

Visual Great intuition for div-and-conquer

Telescoping

Widely applicable Difficult to formulate Not intuitive

Which telescope?

Master Theorem

Immediate Only for div-and-conquer Only gives Big-Theta

http://wiki.ogre3d.org/Mipmapping

Selection Sort: iterative version

```
static void selectionSort(int[] a) {
    for (int last = a.length-1; last > 0; last--) {
        int largest = a[0];
        int largestPosition = 0;
        for (int j=1; j<=last; j++) {</pre>
            if (largest < a[j]) {</pre>
                 largest = a[j];
                 largestPosition = j;
            }
        }
        a[largestPosition] = a[last];
        a[last] = largest;
    }
                                                 What's N?
}
```

Selection Sort: recursive version

```
static void selectionSortRec(int[] a) {
    selectionSortRec(a, a.length-1);
}
static void selectionSortRec(int[] a, int last) {
    if (last == 0) return;
    int largest = a[0];
    int largestPosition = 0;
    for (int j=1; j<=last; j++) {</pre>
        if (largest < a[j]) {</pre>
            largest = a[j];
            largestPosition = j;
        }
    }
    a[largestPosition] = a[last];
    a[last] = largest;
    selectionSortRec(a, last-1);
```

```
What's N?
```

1

}

Telescoping

 Basic idea: Set up equations so that when we sum all L sides and all R sides, we get an equation with lots of cancelation.

• Example: T(1) = 0, T(N) = T(N - 1) + N - 1

$$T(N) = \frac{T(N-1)}{N-1} + N - 1$$
$$\frac{T(N-1)}{T(N-2)} = \frac{T(N-2)}{N-2} + N - 2$$
$$\frac{T(N-2)}{T(N-2)} = \frac{T(N-3)}{N-3} + N - 3$$

$$T(2) = T(1) + 1$$

 $T(1) = 0$

$$T(N) = \sum_{i=1}^{N-1} i$$

 $=\frac{(N-1)N}{2}$

Telescoping

- In general, need to tweak the relation somehow so successive terms cancel
- Example: T(1) = 1, T(N) = 2T(N/2) + Nwhere $N = 2^k$ for some k
- Divide by N to get a "piece of the telescope":

$$T(N) = 2T(\frac{N}{2}) + N$$
$$\implies \frac{T(N)}{N} = \frac{2T(\frac{N}{2})}{N} + 1$$
$$\implies \frac{T(N)}{N} = \frac{T(\frac{N}{2})}{\frac{N}{2}} + 1$$

Etc.

Recursion tree

Index of last level?

 $2^{i}(N/2^{i}) = N$ log₂ N

Total:
$$T(n) = \sum_{i=0}^{\log N} N = N(\log N + 1)$$

Master Theorem

- For Divide-and-conquer algorithms
 - Divide data into one or more parts of the same size
 - Solve problem on one or more of those parts
 - Combine "parts" solutions to solve whole problem
- Examples
 - Binary search
 - Merge Sort
 - MCSS recursive algorithm we studied last time

Theorem 7.5 in Weiss

Master Theorem

For any recurrence in the form: $T(N) = aT(N/b) + \theta(N^k)$ with $a \geq 1, b > 1$ The solution is $T(N) = \begin{cases} \theta(N^{\log_b a}) & \text{if } a > b^k \\ \theta(N^k \log N) & \text{if } a = b^k \\ \theta(N^k) & \text{if } a < b^k \end{cases}$ Example: 2T(N/4) + N

Theorem 7.5 in Weiss

Master Recurrence Tree

- How many nodes at level i?
- How much work at level i?
- Index of last level?

 a^{i} $a^{i} c(N/b^{i})^{k} = cN^{k}(a/b^{k})^{i}$ $\log_{b} N$

Summation:

$$T(N) \le cN^k \sum_{i=0}^{\log_b N} \left(\frac{a}{b^k}\right)^i$$

Interpretation

Upper bound on work at level i:

$$cN^k\left(rac{a}{b^k}
ight)^i$$

- a = "Rate of subproblem proliferation"
- b^k = "Rate of work shrinkage"

Case	≥ a < b ^k	② a = b ^k	≥ a > b ^k
As level i increases	work goes down!	😬 work stays same	😟 work goes up!
T(N) dominated by work done at	Root of tree	Every level similar	Leaves of tree
Master Theorem says T(N) in	Θ(N ^k)	Θ(N ^k log N)	Θ(N ^{log} _b a)

Master Theorem – End of Proof

$$cN^k \sum_{i=0}^{\log_b N} \left(\frac{a}{b^k}\right)^i$$

$$cN^k\left(\frac{1-(a/b^k)^{\log_b N+1}}{1-(a/b^k)}\right) \approx cN^k\left(\frac{1}{1-(a/b^k)}\right)$$

• Case 2. $\mathbf{a} = \mathbf{b}^k$

$$cN^k \sum_{i=0}^{\log_b N} 1 = cN^k (\log_b N + 1)$$

Case 3. a > b^k

$$cN^{k}\left(\frac{(a/b^{k})^{\log_{b}N+1}-1}{(a/b^{k})-1}\right) \approx cN^{k}(a/b^{k})^{\log_{b}N} = ca^{\log_{b}N} = cN^{\log_{b}a}$$

Summary: Recurrence Relations

- Analyze code to determine relation
 - Base case in code gives base case for relation
 - Number and "size" of recursive calls determine recursive part of recursive case
 - Non-recursive code determines rest of recursive case
- Apply a strategy
 - Guess and check (substitution)
 - Telescoping
 - Recurrence tree
 - Master theorem

Sorting overview

Quick look at several sorting methods Focus on quicksort Quicksort average case analysis

Elementary Sorting Methods

- Name as many as you can
- How does each work?
- Running time for each (sorting N items)?
 - best
 - worst
 - average
 - extra space requirements
- Spend 10 minutes with a group of 2-3, answering these questions. Then we will summarize

Put list on board

INEFFECTIVE SORTS

DEFINE HALFHEARTED MERGESORT (LIST): IF LENGTH (LIST) < 2: RETURN LIST PIVOT = INT (LENGTH (LIST) / 2) A = HALFHEARTED MERGESORT (LIST[:PIVOT]) B = HALFHEARTED MERGESORT (LIST[PIVOT:]) // UMMMMM RETURN [A, B] // HERE. SORRY. DEFINE FASTBOGOSORT(LIST): // AN OPTIMIZED BOGOSORT // RUNS IN O(NLOGN) FOR N FROM 1 TO LOG(LENGTH(LIST)): SHUFFLE(LIST): IF ISSORTED(LIST): RETURN LIST RETURN "KERNEL PAGE FAULT (ERROR CODE: 2)"

DEFINE JOBINTERNEWQUICKSORT (LIST): DEFINE PANICSORT(UST): OK 50 YOU CHOOSE A PIVOT IF ISSORTED (LIST): THEN DIVIDE THE LIST IN HALF RETURN LIST FOR EACH HALF: FOR N FROM 1 TO 10000: PIVOT = RANDOM (O, LENGTH (LIST)) CHECK TO SEE IF IT'S SORTED LIST = LIST [PIVOT:]+LIST[:PIVOT] NO WAIT, IT DOESN'T MATTER IF ISSORTED (UST): COMPARE EACH ELEMENT TO THE PIVOT RETURN LIST THE BIGGER ONES GO IN A NEW LIST THE EQUALONES GO INTO, UH IF ISSORTED (LIST): THE SECOND LIST FROM BEFORE RETURN LIST: IF ISSORTED (LIST): //THIS CAN'T BE HAPPENING HANG ON, LET ME NAME THE LISTS THIS IS LIST A RETURN LIST THE NEW ONE IS LIST B IF ISSORTED (LIST): // COME ON COME ON PUT THE BIG ONES INTO LIST B RETURN LIST NOW TAKE THE SECOND LIST // OH JEEZ // I'M GONNA BE IN SO MUCH TROUBLE CALL IT LIST, UH, A2 UST = [] WHICH ONE WAS THE PIVOT IN? SYSTEM ("SHUTDOWN -H +5") SCRATCH ALL THAT SYSTEM ("RM -RF ./") IT JUST RECURSIVELY CAUS ITSELF SYSTEM ("RM -RF ~/*") UNTIL BOTH LISTS ARE EMPTY SYSTEM ("RM -RF /") RIGHT? SYSTEM ("RD /5 /Q C:*") // PORTABILITY NOT EMPTY, BUT YOU KNOW WHAT I MEAN AM I ALLOWED TO USE THE STANDARD LIBRARIES? RETURN [1, 2, 3, 4, 5]

Stacksort connects to StackOverflow, searches for "sort a list", and downloads and runs code snippets until the list is sorted.