

CSSE 230

How can we solve recurrence relations? How many ways can we sort arrays?

More on Recurrence Relations

A technique for analyzing recursive algorithms

Recap: Recurrence Relation

- An equation (or inequality) that relates the $\mathrm{N}^{\text {th }}$ element of a sequence to certain of its predecessors (recursive case)
- Includes an initial condition (base case)
- Solution: A function of N .

Example. Solve using backward substitution.
$\mathrm{T}(\mathrm{N})=2 \mathrm{~T}(\mathrm{~N} / 2)+\mathrm{N}$
$T(1)=1$

Solution strategies

Forward substitution Backward substitution

Simple
Sometimes can't solve difficult relations

Recurrence trees

Visual
Great intuition for div-and-conquer

Telescoping

Widely applicable
Difficult to formulate
Not intuitive

Which
telescope?

Selection Sort: iterative version

```
static void selectionSort(int[] a) {
    for (int last = a.length-1; last > 0; last--) {
        int largest = a[0];
        int largestPosition = 0;
        for (int j=1; j<=last; j++) {
            if (largest < a[j]) {
                    largest = a[j];
                        largestPosition = j;
                }
        }
        a[largestPosition] = a[last];
    a[last] = largest;
    }
}

\section*{Selection Sort: recursive version}
```

static void selectionSortRec(int[] a) {
selectionSortRec(a, a.length-1);
}
static void selectionSortRec(int[] a, int last) {
if (last == 0) return;
int largest = a[0];
int largestPosition = 0;
for (int j=1; j<=last; j++) {
if (largest < a[j]) {
largest = a[j];
largestPosition = j;
}
}
a[largestPosition] = a[last];
a[last] = largest;
selectionSortRec(a, last-1);
}

```

\section*{Telescoping}
- Basic idea: Set up equations so that when we sum all \(L\) sides and all \(R\) sides, we get an equation with lots of cancelation.
- Example: \(\mathrm{T}(1)=0, \mathrm{~T}(\mathrm{~N})=\mathrm{T}(\mathrm{N}-1)+\mathrm{N}-1\)
\[
\begin{aligned}
T(N) & =T(N-1)+N-1 \\
T(N-1) & =T(N-2)+N-2 \\
T(N-2) & =T(N-3)+N-3 \\
& \vdots \\
T(2) & =T(1)+1 \\
T(1) & =0 \\
T(N) & =\sum_{i=1}^{N-1} i \quad=\frac{(N-1) N}{2}
\end{aligned}
\]

\section*{Telescoping}
- In general, need to tweak the relation somehow so successive terms cancel
- Example: \(\mathrm{T}(1)=1, \mathrm{~T}(\mathrm{~N})=2 \mathrm{~T}(\mathrm{~N} / 2)+\mathrm{N}\) where \(N=2^{k}\) for some \(k\)
- Divide by N to get a "piece of the telescope":
\[
\begin{aligned}
T(N) & =2 T\left(\frac{N}{2}\right)+N \\
\Longrightarrow \frac{T(N)}{N} & =\frac{2 T\left(\frac{N}{2}\right)}{N}+1 \\
\Longrightarrow \frac{T(N)}{N} & =\frac{T\left(\frac{N}{N}\right)}{\frac{N}{2}}+1
\end{aligned}
\]

Etc.

\section*{Recursion tree}

Level
0
1
2
\[
\begin{aligned}
& \text { Recurrence: } \\
& \mathrm{T}(\mathrm{~N})=2 \mathrm{~T}(\mathrm{~N} / 2)+\mathrm{N} \\
& \mathrm{~T}(1)=1
\end{aligned}
\]

- How many nodes at level i? \(2^{i}\)
- How much work at level i?
- Index of last level?
\(2^{i}\left(N / 2^{i}\right)=N\) \(\log _{2} N\)
Total: \(\quad T(n)=\sum_{i=0}^{\log N} N=N(\log N+1)\)

\section*{Master Theorem}
- For Divide-and-conquer algorithms
- Divide data into one or more parts of the same size
- Solve problem on one or more of those parts
- Combine "parts" solutions to solve whole problem
- Examples
- Binary search
- Merge Sort
- MCSS recursive algorithm we studied last time

\section*{Theorem 7.5 in Weiss}

\section*{Master Theorem}
- For any recurrence in the form:
\[
\begin{array}{r}
T(N)=a T(N / b)+\theta\left(N^{k}\right) \\
\text { with } a \geq 1, b>1
\end{array}
\]
- The solution is
\[
T(N)= \begin{cases}\theta\left(N^{\log _{b} a}\right) & \text { if } a>b^{k} \\ \theta\left(N^{k} \log N\right) & \text { if } a=b^{k} \\ \theta\left(N^{k}\right) & \text { if } a<b^{k}\end{cases}
\]

Example: \(2 \mathrm{~T}(\mathrm{~N} / 4)+\mathrm{N}\)

\section*{Master Recurrence Tree}

- How many nodes at level i?
- How much work at level i?
- Index of last level?

\section*{\(a^{i}\)}
\(a^{i} c\left(N / b^{i}\right)^{k}=c N^{k}\left(a / b^{k}\right)^{i}\)
\(\log _{b} N\)
Summation: \(T(N) \leq c N^{k} \sum_{i=0}^{\log _{b} N}\left(\frac{a}{b^{k}}\right)^{i}\)

\section*{Interpretation}
- Upper bound on work at level i: \(c N^{k}\left(\frac{a}{b^{k}}\right)^{i}\)
- \(\mathrm{a}=\) "Rate of subproblem proliferation"
- \(b^{k}=\) "Rate of work shrinkage"


\section*{Master Theorem - End of Proof}

Case 1. \(\mathrm{a}<\mathrm{b}^{\mathrm{k}}\)
\(c N^{k}\left(\frac{1-\left(a / b^{k}\right)^{\log _{b} N+1}}{1-\left(a / b^{k}\right)}\right) \approx c N^{k}\left(\frac{1}{1-\left(a / b^{k}\right)}\right)\)
\[
\cos ^{\ln ^{2} \sum_{n=0} \pi\left(\frac{a}{\omega x^{2}}\right)^{2}}
\]
- Case 2. \(a=b^{k}\)
\(c N^{k} \sum_{i=0}^{\log _{b} N} 1=c N^{k}\left(\log _{b} N+1\right)\)
-Case 3. \(\mathrm{a}>\mathrm{b}^{\mathrm{k}}\)
\(c N^{k}\left(\frac{\left(a / b^{k}\right)^{\log _{b} N+1}-1}{\left(a / b^{k}\right)-1}\right) \approx c N^{k}\left(a / b^{k}\right)^{\log _{b} N}=c a^{\log _{b} N}=c N^{\log _{b} a}\)

\section*{Summary: Recurrence Relations}
- Analyze code to determine relation
- Base case in code gives base case for relation
- Number and "size" of recursive calls determine recursive part of recursive case
- Non-recursive code determines rest of recursive case
- Apply a strategy
- Guess and check (substitution)
- Telescoping
- Recurrence tree
- Master theorem

\section*{Sorting overview}

Quick look at several sorting methods
Focus on quicksort
Quicksort average case analysis

\section*{Elementary Sorting Methods}
- Name as many as you can
- How does each work?
- Running time for each (sorting N items)?
- best
- worst
- average
- extra space requirements
- Spend 10 minutes with a group of 2-3, answering these questions. Then we will summarize

\section*{INEFFECTIVE SORTS}
```

DEFINE HALFHEARTEDMERGESORT(LIST):
IF LENGTH(LIST) < 2:
RETURN LIST
PIVOT = INT (LENGTH(LIST) / 2)
A = HALFHEARTEDMERGESORT (LIST[:PINOT])
B = HALFHEARTEDMERGESORT (UST[PNOT:])
// UMMMMM
RETURN[A, B] // HERE. SORRY.

```

DEFINE FASTBOGOSORT(LIST):
// AN OPTIMZED BOGOSORT
// RUNS \(\mathbb{N} O(N L O G N)\)
FOR N FROM 1 TO LOG(LENGTH(LIST)): SHUFFLE(LIST): IF ISSORTED (LIST):

RETURN LIST
Return "Kernel page fault (error code: 2)"

\section*{DEFINE JOBINTERMEWQUICKSORT(LIST):}

OK SO YOU CHOOSE A PNOT
THEN DIVIDE THE LST IN HALF
FOR EACH HALF:
CHECK TO SEE IF IT'S SORTED
NO, WAIT, ITDOESN'T MATTER
COMPARE EACH EEEMENT TO THE PIVOT
TFEE BGGER ONES GO IN A NEW LIST THE EQUALONES GO \(\mathbb{N} T \mathrm{~T}, \mathrm{UH}\) THE SECOND LIST FROM BEFORE
HANG ON, LET ME NAME THE USTS THIS IS UST A
THE NEW ONE IS LISTB
PUTTHE BIG ONES INTO LST B
NOW TAKE THESECOND LIST
CALL IT LIST, UH, A2
WHICH ONE WAS THE PIVOT IN?
SCRATCH ALL THAT
ITJUST RECURSIVELY CAUS TSELF
UNTLL BOTH LISTS ARE EMPTY
RIGHT?
NOT EMPTY, BUT YOU KNOW WHAT I MEAN AM I ALLOWED TO USE THE STANDARD LIBRARIES?
```

DEFINE PANICSORT(UST):
IF ISSORTED(LIST):
RETURN LIST
FOR N FROM 1 TO 10000:
PIVOT = RANDOM(0, LENGTH(LIST))
LIST = LST [PNOT:]+ LIST[:PVOT]
IF ISSORTED(LST):
RETURN LIST
IF ISSORTED(LST):
RETURN UST:
IF ISSORTED(LIST): //THIS CAN'T BE HAPPENING
RETURN LIST
IF ISSORTED (LIST): // COME ON COME ON
REITRN UST
// OH JEEZ
// IMI GONNA BE IN SOMUCH TROUBLE
LIST=[]
SYSTEM ("SHUTDOWN -H +5")
SYSTEM ("RM -RF./")
SYSTEM("RM -RF ~/*")
SYSTEM("RM -RF /")
SISTEM("RD /5 /Q C:**") /IPORTABIIITY
RETURN [1, 2, 3, 4, 5]

```
```

