
Maximum Contiguous Subsequence Sum

Q0-2

After today’s class you will be able to:
provide an example where an insightful algorithm can be much

more efficient than a naive one.

} Sit with your StacksAndQueues partner now

} Why Math?

} HW2
◦ Recommended: complete #1 (UML Diagram of

Collections) by next class, as we will discuss
Collections
◦ You should be ready to work on all of the problems

} Is it true that loga(n) is q(logb(n))?
} Complete homework 2 to find out the exciting

conclusion!
} Here is the graph for a=2 and b=10:

} Is it true that 3n is q(2n)?

So why would we ever sort first to do binary search?

} Problem definition: given a nonempty
sequence of n (possibly negative) integers
𝐴!, 𝐴", 𝐴#, … , 𝐴$%", find the maximum
contiguous subsequence

𝑆&,(=&
)*&

(

𝐴)

and the corresponding values of 𝑖 and 𝑗.

} Exhaustive search: find every Si,j

Q3

} Is MCSS q(n2)?
◦ Showing that a problem is W (g(n)) is much tougher. How do

you prove that it is impossible to solve a problem more
quickly than you already can?

◦ Can we find a yet faster algorithm?
� If so, it can’t use exhaustive search. (Why?)

} Consider {1, 4, –2, 3, -8, 4, -6, 5, -2}

} Any subsequences you can safely ignore?
◦ Discuss with another student (1.5 minutes)

Q4

} We noted that a max-sum sequence Si,j
cannot begin with a negative number.

} Generalizing this, it cannot begin with a
prefix Si,k with k<j whose sum is negative.
◦ Proof by contradiction. Suppose that Si,j is a max-

sum sequence and that Si,k is negative. In that case,
a larger-sum contiguous sequence can be created
by removing Si,k. However, this violates our
assumption that Si,j is a max-sum contiguous
sequence.

Q5

} Every contiguous subsequence that borders a
maximum contiguous subsequence must
have a negative or zero sum.
◦ Proof by contradiction. Consider a contiguous

subsequence that borders an MCSS sequence.
Suppose it has a positive sum. We can then create a
larger max-sum sequence by combining the two
adjacent sequences. This contradicts our
assumption that the original sequence has the
maximum sum.

Q6

} Imagine we are growing subsequences from a fixed left
index i. That is, we compute the sums Si,j for increasing
j.

} Claim: If there is such an Si,j that “just became negative”
(for the first time, with the inclusion of the jth term), any
subsequence starting in between i + 1 and j cannot be a
MaxCSS (unless its sum equals an already-found
MaxCSS)!

} In other words, as soon as we find that Si,j is negative,
we can skip all sums that begin with any of Ai+1, …, Aj.

} I.e., we can “skip i ahead” to be j + 1.

Q7

} Proof by Contradiction. Suppose there is such a MaxCSS, namely Sp,q,
where i+1 £ p £ j.

i jSi,j just became negative!

qpCase 1. q > j MaxCSS

qpCase 2. q ≤ j MaxCSS

} Key point. What must be true of the following sums?

Si,p–1 Sp,j

Starts with a negative prefix. Violates Obs. 1!

Borders a subsequence with nonnegative sum.
Violates Obs. 2, or there is a previous MaxCSS with the
same sum.

≥ 0 < 0 Si,j just became negative!

Si,j is negative. So,
skip ahead per
Observation 3

Running time is O (?)
How do we know?

Q8

} MCSS is O(n)!
} Is MCSS W(n) and thus q(n)?
◦ Yes, intuitively: we must at least examine all n elements

} From personal repo, checkout MCSSRaces

} Study code in MCSS.main()

} For each algorithm, how large a sequence can
you process on your machine in less than 1
second?

} The first algorithm we think of may be a lot
worse than the best one for a problem

} Sometimes we need clever ideas to improve it

} Showing that the faster code is correct can
require some serious thinking

} Programming is more about careful
consideration than fast typing!

} If GM had kept up with technology like the
computer industry has, we would all be driving
$25 cars that got 1000 miles to the gallon.

- Bill Gates

} If the automobile had followed the same
development cycle as the computer, a Rolls-
Royce would today cost $100, get a million miles
per gallon, and explode once a year, killing
everyone inside.

- Robert X. Cringely

A preview of Abstract Data
Types and Java Collections

This week’s major program

Intro: Ideas for how to implement stacks and
queues using arrays and linked lists

How to write your own growable circular
queue:
1. Grow it as needed (like day 1exercise)
2. Wrap-around the array indices for more

efficient dequeuing

Q10

Analyze implementation choices for Queues – much
more interesting than stacks! (See HW)

Application: An exercise in writing cool
algorithms that evaluate mathematical expressions:

Evaluate Postfix: 6 7 8 * +
(62. How?)

Convert Infix to Postfix: 6 + 7 * 8
(6 7 8 * + You’ll figure out how)

Both using stacks.
Read assignment for hints on how.

Q11

